
CSCI 4061: Files, Directories, Standard I/O

Chris Kauffman

Last Updated:
Wed Feb 17 03:58:38 PM CST 2021

1

Logistics

Reading
Stevens/Rago Ch 3, 4, 5, 6

Goals for Week
⊠ read()/write()
⊠ I/O Redirection
⊠ Pipes
⊠ C FILE* vs Unix FDs
□ Filesystem
□ Permissions
□ Hard/Symbolic Links
□ File / Directory

Functions

Date Event
Mon 2/15 Lab: dup2()

Basic I/O, Filesystem
Wed 2/17 Filesystem
Mon 2/22 Lab: Review

Lec: Practice Exam
Project 1 Due

Wed 2/24 Exam 1
Last day to submit P1 late

P1 Questions?
Due date approaching rapidly

2

Permissions / Modes
▶ Unix enforces file security via modes: permissions as to who can read /

write / execute each file
▶ See permissions/modes with ls -l
▶ Look for series of 9 permissions

> ls -l
total 140K
-rwx--x--- 2 kauffman faculty 8.6K Oct 2 17:39 a.out
-rw-r--r-- 1 kauffman devel 1.1K Sep 28 13:52 files.txt
-rw-rw---- 1 kauffman faculty 1.5K Sep 26 10:58 gettysburg.txt
-rwx--x--- 2 kauffman faculty 8.6K Oct 2 17:39 my_exec
---------- 1 kauffman kauffman 128 Oct 2 17:39 unreadable.txt
-rw-rw-r-x 1 root root 1.2K Sep 26 12:21 scripty.sh
U G O O G S M T N
S R T W R I O I A
E O H N O Z D M M
R U E E U E E E

P R R P
^^^^^^^^^^
PERMISSIONS

▶ Every file has permissions set from somewhere on creation
3

Changing Permissions
Owner of file (and sometimes group member) can change
permissions via chmod
> ls -l a.out
-rwx--x--- 2 kauffman faculty 8.6K Oct 2 17:39 a.out

> chmod u-w,g+r,o+x a.out

> ls -l a.out
-r-xr-x--x 2 kauffman faculty 8.6K Oct 2 17:39 a.out

▶ chmod also works via octal bits (suggest against this unless
you want to impress folks at parties)

▶ Programs specify file permissions via system calls
▶ Curtailed by Process User Mask which indicates permissions

that are disallowed by the process
▶ umask shell function/setting: $> umask 007
▶ umask() system call: umask(S_IWGRP | S_IWOTH);

▶ Common program strategy: create files with very liberal
read/write/execute permissions, umask of user will limit this

4

Exercise: Regular File Creation Basics

C Standard I/O
▶ Write/Read data?
▶ Open a file, create it if

needed?
▶ Result of opening a file?
▶ Close a file?
▶ Set permissions on file

creation?

Unix System Calls
▶ Write/Read data?
▶ Open a file, create it if

needed?
▶ Result of opening a file?
▶ Close a file?
▶ Set permissions on file

creation?

5

Answers: Regular File Creation Basics
C Standard I/O

▶ Write/Read data?

fscanf(), fprintf()
fread(), fwrite()

▶ Open a file, create it if needed?
▶ Result of opening a file?

FILE *out =
fopen("myfile.txt","w");

▶ Close a file?

fclose(out);

▶ Set permissions on file creation?
Not possible… dictated by umask

Unix System Calls
▶ Write/Read data?

write(), read()

▶ Open a file, create it if needed?
▶ Result of opening a file?

int fd =
open("myfile.txt",

O_WRONLY | O_CREAT,
permissions);

▶ Close a file?

close(fd);

▶ Set permissions on file creation?
▶ Additional options to

open(), which brings us
to…

6

Permissions / Modes in System Calls
open() can take 2 or 3 arguments
int fd = open(name, flags);
new file will have NO permissions
to read/write, not an issue if opening
existing file

int fd = open(name, flags, perms);
^^^^^

new file will have given permissions
(subject to the umask), ignored for
existing files

Symbol Entity Sets
S_IRUSR User Read
S_IWUSR User Write
S_IXUSR User Execute
S_IRGRP Group Read
S_IWGRP Group Write
S_IXGRP Group Execute
S_IROTH Others Read
S_IWOTH Others Write
S_IXOTH Others Execute

Compare: write_readable.c VERSUS write_unreadable.c

char *outfile = "newfile.txt"; // doesn't exist yet
int flags = O_WRONLY | O_CREAT; // write/create
mode_t perms = S_IRUSR | S_IWUSR; // variable for permissions
int out_fd = open(outfile, flags, perms);

^^^^^
7

Filesystems, inodes, links
▶ Unix filesystems implement physical layout of files/directories

on a storage media (disks, CDs, etc.)
▶ Many filesystems exist but all Unix-centric filesystems share

some common features
inode
▶ Kernel data structure which describes a single file
▶ Stores some meta data: inode#, size, timestamps, owner
▶ A table of contents: which disk blocks contain file data
▶ Does not store filename, does store a link count

Directories
▶ List names and associated inode
▶ Each entry constitutes a hard link to an inode or a symbolic

link to another file
▶ Files with 0 hard links are deleted

8

Rough Filesystem in Pictures 1

Figure 4.13 Disk drive, partitions, and a file system (Stevens/Rago)

9

http://proquestcombo.safaribooksonline.com.ezp3.lib.umn.edu/book/programming/unix/9780321638014/4dot-files-and-directories/ch04lev1sec14_html

Rough Filesystem in Pictures 2

Figure 4.14 Cylinder group’s i-nodes and data blocks in more detail (Stevens/Rago)

10

http://proquestcombo.safaribooksonline.com.ezp3.lib.umn.edu/book/programming/unix/9780321638014/4dot-files-and-directories/ch04lev1sec14_html

Shell Demo of Hard and Symbolic Links

> rm *
> touch fileX # create empty fileX
> touch fileY # create empty fileY
> ln fileX fileZ # hard link to fileX called fileZ
> ln -s fileX fileW # symbolic link to fileX called fileW
> ls -li # -i for inode numbers
total 12K
6685588 -rw-rw---- 2 kauffman kauffman 0 Oct 2 21:24 fileX
6685589 -rw-rw---- 1 kauffman kauffman 0 Oct 2 21:24 fileY
6685588 -rw-rw---- 2 kauffman kauffman 0 Oct 2 21:24 fileZ
6685591 lrwxrwxrwx 1 kauffman kauffman 5 Oct 2 21:29 fileB -> fileA
6685590 lrwxrwxrwx 1 kauffman kauffman 5 Oct 2 21:25 fileW -> fileX
↑↑↑↑↑↑↑ ↑ ↑ ↑↑↑↑↑↑↑↑
inode# regular hard link count symlink target

or symlink

> file fileW # file type of fileW
fileW: symbolic link to fileX
> file fileB # file type of fileB
fileB: broken symbolic link to fileA

11

Linking Commands and Functions

Shell Command C Function Effect
ln fileX fileY link("fileX", "fileY"); Create a hard link
rm fileX remove("fileX"); Unlink (remove) hard link

unlink("fileX"); Identical to remove()
ln -s fileX fileY symlink("fileX", "fileY"); Create a Symbolic link

▶ Creating hard links preserves inodes
▶ Hard links not allowed for directories unless you are root

> ln /home/kauffman to-home
ln: /home/kauffman: hard link not

allowed for directory
Can create directory cycles if this was allowed

▶ Symlinks easily identified so utilities can skip them

12

FYI: inodes are a complex beast themselves

Source: File System Design by Justin Morgan

13

http://web.cs.ucla.edu/classes/spring13/cs111/scribe/11d/

sync() and Internal OS Buffers

▶ Operating system maintains internal data associated with
open files

▶ Writing to a file doesn’t go immediately to a disk
▶ May live in an internal buffer for a while before being sync’ed

to physical medium (OS buffer cache)

Shell Command C function Effect
sync sync(); Synchronize cached writes to persistent storage

syncfs(fd); Synchronize cached writes for filesystem of given open fd

▶ Sync called so that one can “Safely remove drive”
▶ Sync happens automatically at regular intervals (ex: 15s)

14

File Caching Demo

15

Movement within Files, Changing Sizes
▶ Can move OS internal position in a file around with lseek()
▶ Note that size is arbitrary: can seek to any positive position
▶ File automatically expands if position is larger than current

size - fills holes with 0s (null chars)
▶ Can manually set size of a file with ftruncate(fd, size)
▶ Examine file_hole1.c and file_hole2.c

C function Effect
int res = lseek(fd, offset, option); Move position in file
lseek(fd, 20, SEEK_CUR); Move 20 bytes forward
lseek(fd, 50, SEEK_SET); Move to position 50
lseek(fd, -10, SEEK_END); Move 10 bytes from end
lseek(fd, +15, SEEK_END); Move 15 bytes beyond end
ftruncate(fd, 64); Set file to be 64 bytes big

If file grows, new space is
zero-filled

Note: C standard I/O functions fseek(FILE*) and
rewind(FILE*) mirror functionality of lseek()

16

Basic File Statistics via stat

Command C function Effect
stat file int ret = stat(file,&statbuf); Get statistics on file

int ret = lstat(file,&statbuf); Same, don’t follow symlinks
int fd = open(file,...); Same as above but with
int ret = fstat(fd,&statbuf); an open file descriptor

Shell command stat provides basic file info such as shown below
> stat a.out

File: a.out
Size: 12944 Blocks: 40 IO Block: 4096 regular file

Device: 804h/2052d Inode: 6685354 Links: 1
Access: (0770/-rwxrwx---) Uid: (1000/kauffman) Gid: (1000/kauffman)
Access: 2017-10-02 23:03:21.192775090 -0500
Modify: 2017-10-02 23:03:21.182775091 -0500
Change: 2017-10-02 23:03:21.186108423 -0500
Birth: -

> stat /
File: /
Size: 4096 Blocks: 8 IO Block: 4096 directory

Device: 803h/2051d Inode: 2 Links: 17
Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: 2017-10-02 00:56:47.036241675 -0500
Modify: 2017-05-07 11:34:37.765751551 -0500
Change: 2017-05-07 11:34:37.765751551 -0500
Birth: -

See stat_demo.c for info on C calls to obtain this info
17

Directory Access

▶ Directories are fundamental to Unix (and most file systems)
▶ Unix file system rooted at / (root directory)
▶ Subdirectores like bin, ~/home, and /home/kauffman
▶ Useful shell commands and C function calls pertaining to

directories are as follows

Shell Command C function Effect
mkdir name int ret = mkdir(path,perms); Create a directory
rmdir name int ret = rmdir(path); Remove empty directory
cd path int ret = chdir(path); Change working directory
pwd char *path = getcwd(buf,SIZE); Current directory
ls List directory contents

DIR *dir = opendir(path); Start reading filenames from dir
struct dirent *file = readdir(dir); Call in a loop, NULL when done
int ret = closedir(dir); After readdir() returns NULL

See dir_demo.c for demonstrations

18

Exercise: Sketch Code for Total Size of Regular Files

▶ Code which will scan all files
in a directory

▶ Will get file statistics on
each file

▶ Skips directories, symlinks,
etc.

▶ Totals bytes of all Regular
files in current directory

Use techniques demoed in
dir_demo.c and stat_demo.c
from codepack

> gcc total_size.c

> ./a.out
26 readable1.txt

1299 buffered_output.c
2512 stat_demo.c

...
584 file_hole2.c

SKIP .
SKIP my_symlink
SKIP subdir

907 dir_demo.c.bk
...

1415 write_umask.c
==================

67106 total bytes

19

Answers: Sketch Code for Total Size of Regular Files
// total_size.c
int main(int argc, char *argv[]){

size_t total_size = 0;
DIR *dir = opendir(".");
while(1){

struct dirent *file = readdir(dir);
if(file == NULL){

break;
}
struct stat sb;
lstat(file->d_name, &sb);
if(S_ISREG(sb.st_mode)){

printf("%8lu %s\n",
sb.st_size, file->d_name);

total_size += sb.st_size;
}
else{

printf("%-8s %s\n",
"SKIP", file->d_name);

}
}
closedir(dir);
printf("==================\n");
printf("%8lu total bytes from REGULAR files\n",

total_size);
return 0;

}

▶ Scans only current directory
▶ Recursive scanning is

trickier and involves…
recursion

▶ OR the very useful nftw()
library function, discussed in
upcoming HW

▶ Techniques required for
upcoming P2

20

Files in Trees
▶ Frequently one wants to visit all files in a directory tree
▶ P2: check all files for changes / revision control
▶ Options for this on the command line and via system calls

find utility on Shell
> find .
.
./c
./c/d.txt
./b.txt
./src
./src/tests
./src/tests/results.txt
./src/main.c
./src/code.c
./a.txt

> find . -name '*.c'
./src/main.c
./src/code.c

nftw() System Call in C
▶ File Tree Walk : visit all files in a

directory
▶ A Higher Order function: function

parameter
nftw(filename, count_file, ...);
nftw(filename, print_file_info, ...);
nftw(filename, delete_file, ...);

int print_file_info(const char *filename,
const struct stat *sb,
...);

▶ Covered in HW7, used in P2
21

Multiplexed Input/Output

▶ Occasions arise when one must read() from several sources
BUT it is unclear which source is ready and which is not

▶ OS can provide information on ready sources
▶ Future HW will cover poll() and/or select() system calls

which are used for this
▶ Will need it for a project later in the semester
▶ Remaining slides will be revisited then

22

select() and poll(): Non-busy waiting
▶ Recall polling is a busy wait on something: constantly check

until ready
▶ Alternative is interrupt-driven wait: ask for notification when

something is ready, go to sleep, get woken up
▶ Waiting is often associated with input from other processes

through pipes or sockets
▶ Both select() and poll() allow for waiting on input from

multiple file descriptors
▶ Confusingly, both select() and poll() are interrupt-driven:

will put process to sleep until something changes in one or
more files

▶ poll() doesn’t do polling (busy wait) - it does interrupt
driven I/O (!!)

▶ Example application: database system is waiting for any of 10
users to enter a query, don’t know which one will type first

23

poll() System Call

▶ Modern usage favors poll() for multiplexed I/O
▶ Despite name, poll() blocks a process until one of several

input/output sources are immediately ready
▶ Allows for an interrupt-driven style of programming
▶ Covered in Demo usage of the poll() System Call

24

https://www-users.cs.umn.edu/~kauffman/4061/hw-poll-demo.html

select() System Call and File Descriptor Sets

▶ select() uses file descriptor sets
▶ fd_set tracks descriptors of interest, operated on with macros

fd_set my_set;
void FD_ZERO(fd_set *set); // clear entire set
void FD_SET(int fd, fd_set *set); // fd now in set
void FD_CLR(int fd, fd_set *set); // fd now not in set
int FD_ISSET(int fd, fd_set *set); // test if fd in set

▶ Example: setup set of potential read sources
int pipeA[2], pipeB[2], rd_fd; // set up several read sources
pipe(pipeA);
pipe(pipeB);
rd_fd = open("myfile.txt",RD_ONLY);

fd_set read_set; // set of file descriptors for select()
FD_ZERO(&read_set); // init the set

FD_SET(pipeA[PREAD], &read_set); // include read ends of pipes in set
FD_SET(pipeB[PREAD], &read_set);
FD_SET(rd_fd, &read_set); // include read file in the set

25

Multiplexing: Efficient input from multiple sources
▶ select() block a process until at least one of member of the

fd_set is “ready”
▶ Most common use: waiting for input from multiple sources
▶ Example: Multiple child processes writing to pipes at different

rates
#include <sys/select.h>
fd_set read_set, write_set, // sets of fds to wake up for

except_set;

struct timeval timeout; // allows timeout: wake up if nothing happens

int nfds = // returns nfds changed
select(maxfd+1, // must pass max fd+1

&read_set, // any of set may be NULL to ignore
&write_set,
&except_set,
&timeout); // NULL time waits indefinitely

▶ poll() performs similar multiplexed block but has a different
interface

26

