CSCl 4061: Files, Directories, Standard 1/0

Chris Kauffman

Last Updated:
Wed Feb 17 03:58:38 PM CST 2021

Logistics

Reading
Stevens/Rago Ch 3, 4, 5, 6
Date Event
Goals for Week Mon 2/15 Lab: dup2()
X read () /write() Basic 1/0, Filesystem
L Wed 2/17 Filesystem
& 1/O Redirection Mon 2/22 Lab: Review
X Pipes Lec: Practice Exam
X C FILE* vs Unix FDs Project 1 Due
i Wed 2/24 Exam1
[Filesystem Last day to submit P1 late
[J Permissions
[J Hard/Symbolic Links P1 Questions?
[File / Directory Due date approaching rapidly

Functions

Permissions / Modes

» Unix enforces file security via modes: permissions as to who can read /
write / execute each file

» See permissions/modes with 1s -1
» Look for series of 9 permissions

> 1s -1

total 140K

-rwx-—-x--- 2 kauffman faculty 8.6K Oct 2 17:39 a.out
-rw-r--r—— 1 kauffman devel 1.1K Sep 28 13:52 files.txt
-rw-rw---- 1 kauffman faculty 1.5K Sep 26 10:58 gettysburg.txt
-rwx-—-x--- 2 kauffman faculty 8.6K Oct 2 17:39 my_exec
—————————— 1 kauffman kauffman 128 Oct 2 17:39 unreadable.txt

-rw-rw-r-x 1 root root 1.2K Sep 26 12:21 scripty.sh
U G O 0 G S MT N
S R T W R I 01I A
E 0 H N 0 Z DM M
R U E E U E E E
P R R P
PERMISSIONS

» Every file has permissions set from somewhere on creation

Changing Permissions
Owner of file (and sometimes group member) can change
permissions via chmod

> 1s -1 a.out
-rwx--x--- 2 kauffman faculty 8.6K Oct 2 17:39 a.out

> chmod u-w,g+r,o+x a.out

> 1s -1 a.out
-r-xr-x--x 2 kauffman faculty 8.6K Oct 2 17:39 a.out

» chmod also works via octal bits (suggest against this unless
you want to impress folks at parties)
» Programs specify file permissions via system calls
» Curtailed by Process User Mask which indicates permissions
that are disallowed by the process
> umask shell function/setting: $> umask 007
» umask() system call: umask(S_IWGRP | S_IWOTH);
» Common program strategy: create files with very liberal
read /write/execute permissions, umask of user will limit this

Exercise: Regular File Creation Basics

C Standard 1/0

>
4

v

Write/Read data?

Open a file, create it if
needed?

Result of opening a file?
Close a file?

Set permissions on file
creation?

Unix System Calls

>
| 2

v

Write/Read data?

Open a file, create it if
needed?

Result of opening a file?
Close a file?

Set permissions on file
creation?

Answers: Regular File Creation Basics
C Standard 1/0

>

Write/Read data?

fscanf (), fprintf()
fread(), fuwrite()

Open a file, create it if needed?

Result of opening a file?

FILE *out =
fopen("myfile.txt","w");

Close a file?
fclose(out);

Set permissions on file creation?
Not possible... dictated by umask

Unix System Calls

>

Write/Read data?

write(), read()

Open a file, create it if needed?
Result of opening a file?

int fd =
open("myfile.txt",
O0_WRONLY | O_CREAT,
permissions) ;

Close a file?

close(fd);

Set permissions on file creation?

» Additional options to
open(), which brings us
to...

Permissions / Modes in System Calls

open() can take 2 or 3 arguments

int fd = open(name, flags); Symbol Entity Sets
new file will have NO permissions S_IRUSR User Re?d
to read/write, not an issue if opening S_IWUSR User Write
existing file S_IXUSR User Execute
S_IRGRP Group Read
int fd = open(name, flags, perms); S_IWGRP Group Write
AAAAA S_IXGRP Group Execute
new file will have given permissions S_IROTH Others Re?d
(subject to the umask), ignored for S_IWOTH Others Write
S_IXOTH Others Execute

existing files

Compare: write_readable.c VERSUS write_unreadable.c

char *outfile = "newfile.txt"; // doesn't exist yet

int flags
mode_t perms
int out_fd = open(outfile, flags, perms);

O_WRONLY | O_CREAT; // write/create
S_IRUSR | S_IWUSR; // variable for permissions

Filesystems, inodes, links

» Unix filesystems implement physical layout of files/directories
on a storage media (disks, CDs, etc.)

> Many filesystems exist but all Unix-centric filesystems share
some common features

inode

» Kernel data structure which describes a single file

» Stores some meta data: inode#, size, timestamps, owner

> A table of contents: which disk blocks contain file data

» Does not store filename, does store a link count

Directories
» List names and associated inode

» Each entry constitutes a hard link to an inode or a symbolic
link to another file

» Files with 0 hard links are deleted

Rough Filesystem in Pictures 1

disk drive partition

partition

partition

file system

cylinder group 1

cylinder group n ‘

boot block(s) -|—|

super block

~

-

i) cg |i-node | block

i-nodes data blocks ‘

block info | map |bitmap
copy
e T~
i-node | i-node e i-node

Figure 4.13 Disk drive, partitions, and a file system (Stevens/Rago)

http://proquestcombo.safaribooksonline.com.ezp3.lib.umn.edu/book/programming/unix/9780321638014/4dot-files-and-directories/ch04lev1sec14_html

Rough Filesystem in Pictures 2

directory blocks and data blocks ————— =

i-node i-node;

Figure 4.14 Cylinder group’s i-nodes and data blocks in more detail (Stevens/Rago)

10

http://proquestcombo.safaribooksonline.com.ezp3.lib.umn.edu/book/programming/unix/9780321638014/4dot-files-and-directories/ch04lev1sec14_html

Shell Demo of Hard and Symbolic Links

> rm *

> touch fileX # create empty fileX

> touch fileY # create empty fileY

> 1n fileX fileZ # hard link to fileX called fileZ

> In -s fileX fileW # symbolic link to fileX called fileW

> 1s -1i # -i for inode numbers

total 12K

6685588 -rw-rw---- 2 kauffman kauffman O Oct 2 21:24 fileX

6685589 -rw-rw---- 1 kauffman kauffman O Oct 2 21:24 fileY

6685588 -rw-rw---- 2 kauffman kauffman 0 Oct 2 21:24 fileZ

6685591 lrwxrwxrwx 1 kauffman kauffman 5 Oct 2 21:29 fileB -> fileA

6685590 lrwxrwxrwx 1 kauffman kauffman 5 Oct 2 21:25 fileW -> fileX

o T Tttt

inode# regular hard link count symlink target
or symlink

> file fileW # file type of fileW

fileW: symbolic link to fileX

> file fileB # file type of fileB

fileB: broken symbolic link to fileA

11

Linking Commands and Functions

Shell Command C Function Effect

1n fileX fileY link("fileX", "fileY"); Create a hard link

rm fileX remove ("fileX"); Unlink (remove) hard link
unlink("fileX"); Identical to remove ()

In -s fileX fileY symlink("fileX", "fileY"); Create a Symbolic link

» Creating hard links preserves inodes
» Hard links not allowed for directories unless you are root

> 1n /home/kauffman to-home
1n: /home/kauffman: hard link not
allowed for directory

Can create directory cycles if this was allowed

» Symlinks easily identified so utilities can skip them

12

FYI: inodes are a complex beast themselves

10 direct pointers

inode

file size

indirect block

device id

block index 10

group id

block index 11

block index 12

user id

file mode

indirect block

block index 2058

block index 2059

block index 2060

timestamp

link count

block index 2057

block index 0

block index 1

double indirect block

block index 4105

block index 2

block index 3

block index 4

block index 3

|

block index 6

block index 7

block index 8

block index 9

32 bits

indirect block

block index 4106

block index 4107

block index 4108

Source: File System Design by Justin Morgan

block index 6153

13

http://web.cs.ucla.edu/classes/spring13/cs111/scribe/11d/

sync () and Internal OS Buffers

» Operating system maintains internal data associated with
open files

» Writing to a file doesn't go immediately to a disk

» May live in an internal buffer for a while before being sync'ed
to physical medium (OS buffer cache)

Shell Command C function Effect
sync sync(); Synchronize cached writes to persistent storage
syncfs(£d); Synchronize cached writes for filesystem of given open fd

» Sync called so that one can “Safely remove drive”

» Sync happens automatically at regular intervals (ex: 15s)

14

File Caching Demo

USER SPACE
Process Memory #1234

read_fd

1. Start of program : file not yet opened

KERNEL SPACE
File Table for #1234

0 T

‘erminal Input

1 Terminal Output

- file table entry

cached isk

inode for file

AN

[]

ABCD ‘ EFGH. ‘ KL ‘ MNOP ‘

BUFFER CACHE (RAM : Fast)

: Slow)

PHYSICAL STORAGE (Dis!

2. read_fd = open(...) completes

USER SPACE KERNEL SPACE
Process Memory #1234 File Table for #1234
0 Terminal Input
read_fd
- 1 Terminal Output

2 Terminal Output
3 RDWR | pos=0 | file table entry
4

Cached | disk

e an

l I ABCD I I EFGH l ABCD | EFGH | IKL MNOP
BUFFER CACHE (RAM : Fast) PHVS/CAL STDRAGE (Disk : Slow)

Process Memory #12

3. write(3, "CHANGE!", 7); completes

USER SPACE KERNEL SPACE

34 File Table for #1234

0

Terminal Input

Terminal Output

Terminal Output

RDWR | pos=7 |file table entry

cached disk

I CHAN I I GEIH l ‘ ABCD ‘ EFGH ‘ UKL

MNOP ‘

BUFFER CACHE (RAM : Fast)

PHYSICAL STORAGE (Disk : Slow)

4. sync() completes (automatically done by OS every few seconds)

USER SPACE KERNEL SPACE
Process Memory #1234 File Table for #1234

- 1 Terminal Output
2 Terminal Output

0 Terminal Input

3 RDWR | pos=7 | file table entry

l I CHAN I I GEIH l ‘ CHAN ‘ GEIH ‘ KL ‘ MNOP ‘
BUFFER CACHE (RAM : Fast) PHYSICAL STORAGE (Disk : Slow)

15

Movement within Files, Changing Sizes

» Can move OS internal position in a file around with 1seek ()

v

Note that size is arbitrary: can seek to any positive position

» File automatically expands if position is larger than current
size - fills holes with Os (null chars)

» Can manually set size of a file with ftruncate(fd, size)
» Examine file holel.c and file hole2.c

C function Effect
int res = lseek(fd, offset, option); Move position in file
1lseek(fd, 20, SEEK_CUR); Move 20 bytes forward
1lseek(fd, 50, SEEK_SET); Move to position 50
1seek(fd, -10, SEEK_END); Move 10 bytes from end
1seek(fd, +15, SEEK_END); Move 15 bytes beyond end
ftruncate(fd, 64); Set file to be 64 bytes big
If file grows, new space is
zero-filled

Note: C standard I/O functions fseek (FILE*) and
rewind (FILE*) mirror functionality of 1seek()

16

Basic File Statistics via stat

Command C function Effect

stat file int ret = stat(file,&statbuf); Get statistics on file
int ret = lstat(file,&statbuf); Same, don't follow symlinks

int fd = open(file,...); Same as above but with
int ret = fstat(fd,&statbuf); an open file descriptor

Shell command stat provides basic file info such as shown below

> stat a.out

File: a.out

Size: 12944 Blocks: 40 I0 Block: 4096 regular file
Device: 804h/2052d Inode: 6685354 Links: 1
Access: (0770/-rwxrwx---) Uid: (1000/kauffman) Gid: (1000/kauffman)
Access: 2017-10-02 23:03:21.192775090 -0500
Modify: 2017-10-02 23:03:21.182775091 -0500
Change: 2017-10-02 23:03:21.186108423 -0500

Birth: -
> stat /

File: /

Size: 4096 Blocks: 8 I0 Block: 4096 directory
Device: 803h/2051d Inode: 2 Links: 17

Access: (0755/drwxr-xr-x) Uid: (o/ root) Gid: (0/ root)
Access: 2017-10-02 00:56:47.036241675 -0500

Modify: 2017-05-07 11:34:37.765751551 -0500

Change: 2017-05-07 11:34:37.765751551 -0500

Birth: -

See stat_demo.c for info on C calls to obtain this info

Directory Access

» Directories are fundamental to Unix (and most file systems)

» Unix file system rooted at / (root directory)

» Subdirectores like bin, ~/home, and /home/kauffman

» Useful shell commands and C function calls pertaining to
directories are as follows

Shell Command

C function

Effect

mkdir name
rmdir name
cd path
pwd

1s

int ret = mkdir(path,perms);
int ret = rmdir(path);

int ret = chdir(path);

char *path = getcwd(buf,SIZE);

DIR *dir = opendir(path);
struct dirent *file = readdir(dir);
int ret = closedir(dir);

Create a directory

Remove empty directory
Change working directory
Current directory

List directory contents

Start reading filenames from dir
Call in a loop, NULL when done
After readdir() returns NULL

See dir_demo.c for demonstrations

18

Exercise: Sketch Code for Total Size of Regular Files

» Code which will scan all files
in a directory

» Will get file statistics on
each file

» Skips directories, symlinks,
etc.

» Totals bytes of all Regular
files in current directory

Use techniques demoed in
dir_demo.c and stat_demo.c
from codepack

> gcc total_size.c

> ./a.out
26 readablel.txt
1299 buffered_output.c
2512 stat_demo.c

584 file_hole2.c

SKIP
SKIP my_symlink
SKIP subdir

907 dir_demo.c.bk

1415 write_umask.c

67106 total bytes

19

Answers: Sketch Code for Total Size of Regular Files

// total_size.c
int main(int argc, char *argv[]){
size_t total_size = 0;
DIR *dir = opendir(".");
while(1){
struct dirent *file = readdir(dir);
if (file == NULL){
break;
}
struct stat sb;
lstat(file->d_name, &sb);
if (S_ISREG(sb.st_mode))q{
printf ("%81lu %s\n",
sb.st_size, file->d_name);
total_size += sb.st_size;
}
else{
printf("%-8s %s\n",
"SKIP", file->d_name);
}
}
closedir(dir);
printf (" \n") ;

Scans only current directory

Recursive scanning is
trickier and involves...
recursion

OR the very useful nftw()
library function, discussed in
upcoming HW

Techniques required for
upcoming P2

printf ("%8lu total bytes from REGULAR files\n",

total_size);
return 0O;

20

Files in Trees

» Frequently one wants to visit all files in a directory tree

» P2: check all files for changes / revision control

» Options for this on the command line and via system calls

find utility on Shell

> find .

./c

./c/d. txt

./b.txt

./src

./src/tests
./src/tests/results.txt
./src/main.c
./src/code.c

./a.txt

> find . -name '*.c'
./src/main.c
./src/code.c

nftw() System Call in C

>

>

>

File Tree Walk : visit all files in a
directory

A Higher Order function: function

parameter

nftw(filename, count_file, S I
nftw(filename, print_file_info, ...);
nftw(filename, delete_file, L)

int print_file_info(const char *filename,
const struct stat *sb,

L)

Covered in HW7, used in P2

21

Multiplexed Input/Output

» Occasions arise when one must read() from several sources
BUT it is unclear which source is ready and which is not

» OS can provide information on ready sources

» Future HW will cover pol1() and/or select() system calls
which are used for this

> Will need it for a project later in the semester

» Remaining slides will be revisited then

22

select () and poll(): Non-busy waiting

>

>

Recall polling is a busy wait on something: constantly check
until ready

Alternative is interrupt-driven wait: ask for notification when
something is ready, go to sleep, get woken up

Waiting is often associated with input from other processes
through pipes or sockets

Both select() and poll() allow for waiting on input from
multiple file descriptors

Confusingly, both select() and poll() are interrupt-driven:
will put process to sleep until something changes in one or
more files

poll() doesn't do polling (busy wait) - it does interrupt
driven 1/0 (1)

Example application: database system is waiting for any of 10
users to enter a query, don't know which one will type first

23

poll() System Call

» Modern usage favors poll() for multiplexed I/O

» Despite name, poll() blocks a process until one of several
input/output sources are immediately ready

» Allows for an interrupt-driven style of programming

» Covered in Demo usage of the poll() System Call

24

https://www-users.cs.umn.edu/~kauffman/4061/hw-poll-demo.html

select() System Call and File Descriptor Sets

> select () uses file descriptor sets

> fd_set tracks descriptors of interest, operated on with macros
fd_set my_set;

void FD_ZERO(fd_set *set); // clear entire set
void FD_SET(int fd, fd_set *set); // fd now in set
void FD_CLR(int fd, fd_set *set); // fd now not in set

int FD_ISSET(int fd, fd_set *set); // test if fd in set

> Example: setup set of potential read sources
int pipeA[2], pipeB[2], rd_fd; // set up several read sources

pipe(pipeA);

pipe(pipeB);

rd_fd = open("myfile.txt",RD_ONLY);

fd_set read_set; // set of file descriptors for select()
FD_ZERO(&read_set); // init the set

FD_SET (pipeA[PREAD], &read_set); // include read ends of pipes in set
FD_SET(pipeB[PREAD], &read_set);
FD_SET(rd_fd, &read_set); // include read file in the set

25

Multiplexing: Efficient input from multiple sources
> select() block a process until at least one of member of the
fd_set is “ready”
» Most common use: waiting for input from multiple sources
» Example: Multiple child processes writing to pipes at different
rates

#include <sys/select.h>
fd_set read_set, write_set, // sets of fds to wake up for
except_set;

struct timeval timeout; // allows timeout: wake up if nothing happens
int nfds = // returns nfds changed
select (maxfd+1, // must pass max fd+1
&read_set, // any of set may be NULL to ignore

&write_set,
&except_set,
&timeout) ; // NULL time waits indefinitely

» poll() performs similar multiplexed block but has a different

interface
26

