
CSCI 4061: Processes and Environment

Chris Kauffman

Last Updated:
Mon Feb 8 03:54:59 PM CST 2021

1

Logistics

Reading
▶ Stevens/Rago, Ch 7-8

(Procs / Env)
▶ Stevens/Rago Ch 3, 4, 5, 6

(I/O + Files)

Goals Today
▶ Process Lifecycle
▶ Killing programs
▶ Process memory layout
▶ Command Line Args
▶ Environment Variables
▶ Start I/O discussion

Labs/HWs
▶ Lab02 / HW02 due Mon
▶ Lab03 on Mon, realloc()

function,
▶ HW03: on Mon WNOHANG

and parents

Project 1
▶ Up now
▶ Due Mon 2/22 11:59pm
▶ Partners allowed
▶ Will create Piazza post for

finding partners

2

Process: A “Running” Program

▶ Most OS’s provide a Process abstraction
▶ Hardware like the CPU just sees a stream of instructions, bits

stored, bytes on disk
▶ OS presents notion of

▶ “These instructions are for this running program”
▶ “This running program owns this part of memory”
▶ “This file was opened by this running program”

▶ One stored program can create many Processes
▶ OS is responsible for managing the lives of Processes with

fairness and security

3

Process Life Cycle

Source: Saverio Perugini, lecture notes

▶ Processes (running programs) can be in one of several states
▶ OS tracks these states and manages transitions between them
▶ OS uses some internal data structure to track process state,

can report states via utilities like top and ps

4

http://academic.udayton.edu/saverioperugini/courses/cps346/lecture_notes/processes.html

ps and top show running process status
These shell commands show a STAT or S columns corresponding
loosely to process states.

STAT Meaning
Common

R running or runnable (on run queue)
S interruptible sleep (waiting for an event to complete)
T stopped, either by a job control signal or being traced.
Z defunct (“zombie”) process, terminated but not reaped by parent.
I idle (kernel process/thread only)

Less Common
D uninterruptible sleep (usually IO)
W paging (not valid since the 2.6.xx kernel)
X dead (should never be seen)

Source: man page for ps

We’ll continue to discuss Specifics of Zombines and Orphans

5

Handy Commands

▶ top: interactively observe top running processes, usually
sorted by CPU usage

▶ ps: snapshot of running processes filtered on various criteria
▶ watch: repeatedly run a command showing its output on the

screen
Interactively observe all processes sorting by top CPU usage

> top

press q to quit
Watch processes with command name yes refreshing every 0.1
seconds showing u-ser relevant information on the processes

> watch -n 0.1 'ps u -C yes'

Press Ctrl-c to end the watch

6

Terminal: Foreground/Background Processes
▶ Type a program into the terminal, press enter
▶ Stars a process in the foreground of the terminal

▶ Input from user typing, output to terminal screen
▶ Jobs can be run in the background as well

▶ Usually input must come from somewhere aside from user
typing, output should go into a file or it will pollute the
terminal

Key/Cmd Effect
Ctrl-z Stop/Suspend foreground process, gets prompt back
Ctrl-c Terminate foreground process (usually)
ls & Run program in background, gets prompt immediately
bg %2 Moves stopped Job 2 to background and continues it
fg %4 Moves background Job 4 to foreground
jobs List jobs under the control of the terminal
kill %3 End job 3 nicely
kill -9 %3 End job 3 unequivocally

7

Exercise: Basic Job Control
Give a sequence of commands / keystrokes to…
Misbehaving
▶ Compile no_interruptions.c to a program named

invincible
▶ Run invincible
▶ Try to end the process by sending it the interrupt signal
▶ In a separate terminal, end the invicible program

Edit / Build Seq
▶ Edit a source file like collatz_funcs.c with vi
▶ Suspend vi (don’t quit it)
▶ Re-build program and run automated tests
▶ Terminate before completing tests
▶ Bring back vi to edit codes

8

Murdering Processes

Keystrokes to Remember

Ctrl-c Send the interrupt signal, kills most processes
Ctrl-z Send the stop signal, puts process to sleep

Easy to Kill
▶ yes spits output to the

screen continuously
▶ End it from the terminal it

started in
▶ Suspend it then, end it
▶ Kill it from a different

terminal

Harder to Kill
▶ Consider the program

no_interruptions.c
▶ Ignores some common

signals
▶ Need to use the big stick for

this one:
kill -9 1234 OR
pkill -9 a.out

9

States of a Living Process

▶ Note inclusion of
Kernel/OS here

▶ Interrupt and Sys
Calls start running
code in the operating
system

▶ Interrupt/Signal can
come from software
or hardware

▶ Context switch
starts running another
process, only happens
when one process is
safely tucked in and
put to sleep

Source: Design of the Unix Operating System by Maurice Bach

10

Recall: Program Memory

▶ What are the 4 memory areas to a C program we’ve discussed
OR that you know from previous courses?

▶ Give an example of how one creates variables/values in each
area of memory

11

Answers: Program Memory
▶ What are the 4 memory areas to a C program we’ve discussed

OR that you know from previous courses?
1. Stack: automatic, push/pop with function calls
2. Heap: malloc() and free()
3. Global: variables outside functions, static vars
4. Text: Assembly instructions

▶ Give an example of how one creates variables/values in each
area of memory

1 #include <stdlib.h>
2 int glob1 = 2; // global var
3 int func(int *a){ // param stack var
4 int b = 2 * (*a); // local stack var
5 return b; // de-allocate locals in func()
6 }
7 int main(){ // main entry point
8 int x = 5; // local stack var
9 int c = func(&x); // local stack var

10 int *p = malloc(sizeof(int)); // local stack var that points into heap
11 *p = 10; // modify heap memory
12 glob1 = func(p); // allocate func() locals and run code
13 free(p); // deallocate heap mem pointed to p
14 return 0; // deallocate locals in main()
15 }
16 // all executable code is in the .text memory area as assmebly instructions

12

More Detailed Process Memory

Source: Unix Systems Programming, Robbins & Robbins

13

Yet more detailed view (Link)
A detailed picture of the virtual memory image, by Wolf Holzman

main.o

file.o

crt0.o (startup routine)

"...%d..."

global variables

Heap
(malloc arena)

System

argv
argc

auto variables for
main()

auto variables for
func()

func(72,73)

ST
A

C
K

SH
A

R
E

D

M
E

M
O

R
Y

D
A

T
A

T
E

X
T

co
m

pi
le

d
co

de
 (

a.
ou

t)

uninitialized data (bss)

initialized data

stack pointer

mfp − frame pointer (for main)

Low memory

High memory
func(72,73) called from main(),
assuming func defined by:
 func(int x, int y) {
 int a;

(grows downward if func()
 calls another function)

 int b[3];
 /* no other auto variables */

size 4 and assumes stack at high

ra
mfp
garbage
garbage
garbage
garbage

main()
auto
variables

Offset from current
frame pointer (for
func())

+12
 +8
 +4
 0
 −4
 −8
−12
−16

frame pointer
points here

stack pointer
(top of stack)
points here

y
x

a

b[1]

Contents

Stack illustrated after the call

library functions if
dynamically linked
(usual case)

brk point

ra (return address)

b[2]

b[0]

Expanded view of the stack

address and descending down.

All auto variables and parameters
are referenced via offsets from the
frame pointer.

The frame pointer and stack pointer
are in registers (for fast access).

When funct returns, the return value
is stored in a register. The stack pointer
is move to the y location, the code
is jumped to the return address (ra),
and the frame pointer is set to mfp
(the stored value of the caller’s frame
pointer). The caller moves the return
value to the right place.

Stack

caller’s frame pointer

Assumes int = long = char * of

env

library functions if
statically linked
(not usual case)

malloc.o (lib*.so)

malloc.o (lib*.a)

printf.o (lib*.a)

printf.o (lib*.so)

available for
heap growth

available for
stack growth

Memory Layout (Virtual address space of a C process)

return address

73
72

14

http://www-users.cs.umn.edu/~kauffman/4061/wolf-holzmann-memlayout.pdf
http://www.cs.uleth.ca/~holzmann/C/system/
http://www.cs.uleth.ca/~holzmann/

Unix Processes In Memory

Source: Tutorials Point

▶ Separate Memory Image for
Each Process

▶ OS + Hardware keeps
processes inside their own
address space

▶ Consequence for program
dynamic memory allocation?

▶ Problems with running
system calls?

This picture should bother you
Shows a gross simplification but will suffice until later when we
discuss Virtual Memory system which is maintained by the OS

15

http://www.tutorialspoint.com/operating_system/os_memory_management.htm

Exercise: Memory Problems in C Programs
What you’re up against

▶ Stack problems: References to stack variables that go away
▶ Segmentation Faults: Access memory out of bounds for whole program,

via heap or via stack
▶ Null pointers dereference: Often results in a segfault as NULL translates to

address 0x0000 which is off limits
▶ Use of uninitialized: variables don’t have values by default, assign or get

something random
▶ Memory Leaks: malloc() memory that is not used but never free()’d,

program gobbles more and more memory
▶ Examine results of running overflow.c, EXPLAIN OUTPUT

Solutions
▶ Don’t program in C
▶ Use a tool to help identify and fix problems
▶ Valgrind → FREE for Linux Programs

16

Code for overflow.c
1 // overflow.c: program traverses memory that it really ought not to by
2 // walking off the end of an array into parts unknown.
3
4 #include <stdio.h>
5 int main(int argc, char *argv[]){
6 char a[3] = {'A','B','C'};
7 int i = 0;
8 while(1){
9 printf("%c",a[i]);

10 i++;
11 if(i%40 == 0){
12 printf("\n");
13 }
14 }
15 return 0;
16 }
17
18 // ## COMPILE AND RUN
19 // > gcc overflow.c
20 // > ./a.out
21 // ABC..^@....E.....*V^@^@ ...^?^@^@X.^?^@^@^@^@^@^@.
22 // ^@^@^@9..*V^@^@.....^?^@^@^@^@^@^@^@^@^@^@..K..|..
23 // V^@^
24 //M.....

17

Valgrind: Memory Tool on Linux and Mac
▶ Valgrind catches most memory

errors
▶ Use of uninitialized memory
▶ Reading/writing memory after it

has been free’d
▶ Reading/writing off the end of

malloc’d blocks
▶ Memory leaks

▶ Source line of problem happened
(but not cause)

▶ Super easy to use, installed on lab
machines

▶ Slows execution of program way
down

▶ Usually install on Linux via
> sudo apt install valgrind

> gcc -g badmemory.c
> ./a.out
-714833203
0
1
4
9
16
0
1
...
5
6
7
8
Segmentation fault (core dumped)
what now??

18

Valgrind on Common Problems in badmemory.c
> valgrind ./a.out
==2913308== Memcheck, a memory error detector
==2913308== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==2913308== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==2913308== Command: ./a.out
==2913308==
==2913308== Conditional jump or move depends on uninitialised value(s)
==2913308== at 0x109189: main (badmemory.c:6)
==2913308==
0
1
4
9
==2913308== Invalid write of size 4
==2913308== at 0x1091D2: main (badmemory.c:11)
==2913308== Address 0x4a43050 is 0 bytes after a block of size 16 alloc'd
==2913308== at 0x483877F: malloc (vg_replace_malloc.c:309)
==2913308== by 0x1091AA: main (badmemory.c:9)
...
8
==2913308== Invalid read of size 4
==2913308== at 0x10924E: main (badmemory.c:20)
==2913308== Address 0x0 is not stack'd, malloc'd or (recently) free'd
==2913308== Process terminating with default action of signal 11 (SIGSEGV):
==2913308== dumping core

19

Debuggers

▶ There comes a day when printf just isn’t enough
▶ On that day you will start compiling with -g to turn on the

debugger
▶ Then you will run gdb myprog, set some breakpoints, and get

to the root of the problem
▶ Debuggers are covered in earlier CSCI courses (like CSCI

2021); refer to those materials to review / refresh
https://www-users.cs.umn.edu/~kauffman/2021/gdb

20

https://www-users.cs.umn.edu/~kauffman/2021/gdb

Communicating Information to Programs

▶ Often programs need info from the outside world
▶ What file to read/write, # of iterations to run, verbose/quiet

output, report immediately, shutdown gracefully etc.
▶ A variety of mechanisms exist to convey such info to a

program
1. Command Line Arguments
2. Environment Variables
3. Signals
4. Input/Output system calls and libraries

▶ Will now discuss 1 & 2 which are often used at program
startup

▶ Alluded to Signals (#3) earlier (SIGKILL, SIGSTOP);
Will discuss Signals in more detail later

▶ I/O calls (#4) will come soon (next lecture)

21

Exercise: Command Line Arguments
int main(int argc, char *argv[])

2-arg version of main() will be set up to have number of
arguments and array of strings in it by whatever started it

> cat print13.c
#include <stdio.h>
int main(int argc, char *argv[]){
printf("%s\n",argv[1]);
printf("%s\n",argv[3]);

}
> gcc -o mine print13.c
> ./mine -c 10 2.0
-c
2.0 argc is 4 in this case

Print Args
Write a quick C program which prints ALL of its argv elements as
strings. Print a special message if an arg is string --verbose

22

Answers: Command Line Arguments

File: 04-process-environment-code/print_args.c
1 // Print all the arguments in the argv array. Prints a special message
2 // if option is --verbose.
3
4 #include <stdio.h>
5 #include <string.h>
6
7 int main(int argc, char *argv[]){
8 printf("%d args received\n",argc);
9 for(int i=0; i<argc; i++){

10 printf("%d: %s\n",i,argv[i]);
11 if(strcmp(argv[i],"--verbose") == 0){
12 printf("Turning on VERBOSE output\n");
13 }
14 }
15 return 0;
16 }

23

Environment Variables

All programs can access environment variables, name/value pairs
used to communicate and alter behavior.

Shell show/set variables
Done with echo $VARNAME

> echo $PAGER
less
> PAGER=cat
> echo $PAGER
cat
> echo "'$PS1'"
'>'
> PS1='wicked$ '
wicked$
> export x=1234 # in env
> y=5678 # not

Shell env
Show all environment

> env
JAVA8_HOME=/usr/lib/jvm/java-8-openjdk
PAGER=less
PWD=/home/kauffman/4061-F2017/lectures/04-process-environment-code
HOME=/home/kauffman
BROWSER=chromium
COLUMNS=79
MAIL=/var/spool/mail/kauffman
MANPATH=:/home/kauffman/local/man:/home/kauffman/local/usr/share/man::/man:/home/kauffman/local/man:/home/kauffman/local/usr/share/man::/man
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/home/kauffman/bin:/home/kauffman/Dropbox/bin:/home/kauffman/code/bin:/home/kauffman/code/utils:.:/home/kauffman/bin:/home/kauffman/Dropbox/bin:/home/kauffman/code/bin:/home/kauffman/code/utils:.
PS1=>
x=1234
...

24

C Programs and Environment Vars

▶ Global variable char **environ provides array of
environment variables in form VARNAME=VALUE, null
terminated

▶ NOT suggested to use environ directly,
▶ Instead use library functions getenv() / setenv() to

check/change
25

C Library for Environment Vars

The C Library Provides standard library functions for manipulating
environment variables.
#include <stdlib.h>

char *getenv(const char *name);
// returns pointer to value associated with name, NULL if not found

int setenv(const char *name, const char *value, int rewrite);
// sets name to value. If name already exists in the environment, then
// (a) if rewrite is nonzero, the existing definition for name is
// first removed; or (b) if rewrite is 0, an existing definition for
// name is not removed, name is not set to the new value,and no error
// occurs. return: 0 if OK, -1 on error

int unsetenv(const char *name);
// removes any definition of name. It is not an error if such a
// definition does not exist. return: 0 if OK, -1 on error

int putenv(char *str);
// str is of form NAME=VALUE, alters environment accordingly. If name
// already exists, its old definition is first removed. Don't use with
// stack strings. Returns: 0 if OK, nonzero on error.

26

Exercise: Manipulate Environment Vars
Write a short C program which
behaves as indicated in the demo
▶ Prints ROCK and VOLUME

environment variables
▶ If ROCK is set to anything,

change VOLUME to “11”

Use these functions
char *getenv(const char *name);
// NULL if name not sot
// otherwise pointer to value

int setenv(const char *name,
const char *value,
int rewrite);

// Change name value pair,
// if rewrite is 1,
// overwrite previous definitions

Note the use of export to ensure child
processes see the environment variables

> unset ROCK
> unset VOLUME
> gcc environment_vars.c
> a.out
ROCK not set
VOLUME is not set
> export VOLUME=7
> a.out
ROCK not set
VOLUME is 7
> export ROCK=yes
> a.out
ROCK is yes
Turning VOLUME to 11
VOLUME is 11
> echo $VOLUME
7

Note also that the program does not
change the shell’s values for ROCK: no child
can change a parent’s values (or mind)

27

Answers: Manipulate Environment Vars
See 04-process-environment-code/environment_vars.c
1 // environment_vars.c: solution to in-class exercise showing how to
2 // check and set environment variables via the standard getenv() and
3 // setenv() functions.
4 #include <stdlib.h>
5 #include <stdio.h>
6
7 int main(int argc, char *argv[]){
8
9 char *rock = getenv("ROCK");

10 if(rock == NULL){
11 printf("ROCK not set\n");
12 }
13 else{
14 printf("ROCK is %s\n",rock);
15 printf("Turning VOLUME to 11\n");
16 int fail = setenv("VOLUME","11",1);
17 if(fail){
18 printf("Couldn't change VOLUME\n");
19 }
20 }
21 char *volume = getenv("VOLUME");
22 if(volume == NULL){
23 volume = "not set";
24 }
25 printf("VOLUME is %s\n",volume);
26 return 0;
27 }

28

