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Logistics

Reading
▶ Stevens/Rago, Ch 7-8

(Procs / Env)
▶ Stevens/Rago Ch 3, 4, 5, 6

(I/O + Files)

Goals Today
▶ Process Lifecycle
▶ Killing programs
▶ Process memory layout
▶ Command Line Args
▶ Environment Variables
▶ Start I/O discussion

Labs/HWs
▶ Lab02 / HW02 due Mon
▶ Lab03 on Mon, realloc()

function,
▶ HW03: on Mon WNOHANG

and parents

Project 1
▶ Up now
▶ Due Mon 2/22 11:59pm
▶ Partners allowed
▶ Will create Piazza post for

finding partners
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Process: A “Running” Program

▶ Most OS’s provide a Process abstraction
▶ Hardware like the CPU just sees a stream of instructions, bits

stored, bytes on disk
▶ OS presents notion of

▶ “These instructions are for this running program”
▶ “This running program owns this part of memory”
▶ “This file was opened by this running program”

▶ One stored program can create many Processes
▶ OS is responsible for managing the lives of Processes with

fairness and security
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Process Life Cycle

Source: Saverio Perugini, lecture notes

▶ Processes (running programs) can be in one of several states
▶ OS tracks these states and manages transitions between them
▶ OS uses some internal data structure to track process state,

can report states via utilities like top and ps
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ps and top show running process status
These shell commands show a STAT or S columns corresponding
loosely to process states.

STAT Meaning
Common

R running or runnable (on run queue)
S interruptible sleep (waiting for an event to complete)
T stopped, either by a job control signal or being traced.
Z defunct (“zombie”) process, terminated but not reaped by parent.
I idle (kernel process/thread only)

Less Common
D uninterruptible sleep (usually IO)
W paging (not valid since the 2.6.xx kernel)
X dead (should never be seen)

Source: man page for ps

We’ll continue to discuss Specifics of Zombines and Orphans
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Handy Commands

▶ top: interactively observe top running processes, usually
sorted by CPU usage

▶ ps: snapshot of running processes filtered on various criteria
▶ watch: repeatedly run a command showing its output on the

screen
Interactively observe all processes sorting by top CPU usage

> top

press q to quit
Watch processes with command name yes refreshing every 0.1
seconds showing u-ser relevant information on the processes

> watch -n 0.1 'ps u -C yes'

Press Ctrl-c to end the watch
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Terminal: Foreground/Background Processes
▶ Type a program into the terminal, press enter
▶ Stars a process in the foreground of the terminal

▶ Input from user typing, output to terminal screen
▶ Jobs can be run in the background as well

▶ Usually input must come from somewhere aside from user
typing, output should go into a file or it will pollute the
terminal

Key/Cmd Effect
Ctrl-z Stop/Suspend foreground process, gets prompt back
Ctrl-c Terminate foreground process (usually)
ls & Run program in background, gets prompt immediately
bg %2 Moves stopped Job 2 to background and continues it
fg %4 Moves background Job 4 to foreground
jobs List jobs under the control of the terminal
kill %3 End job 3 nicely
kill -9 %3 End job 3 unequivocally
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Exercise: Basic Job Control
Give a sequence of commands / keystrokes to…
Misbehaving
▶ Compile no_interruptions.c to a program named

invincible
▶ Run invincible
▶ Try to end the process by sending it the interrupt signal
▶ In a separate terminal, end the invicible program

Edit / Build Seq
▶ Edit a source file like collatz_funcs.c with vi
▶ Suspend vi (don’t quit it)
▶ Re-build program and run automated tests
▶ Terminate before completing tests
▶ Bring back vi to edit codes
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Murdering Processes

Keystrokes to Remember

Ctrl-c Send the interrupt signal, kills most processes
Ctrl-z Send the stop signal, puts process to sleep

Easy to Kill
▶ yes spits output to the

screen continuously
▶ End it from the terminal it

started in
▶ Suspend it then, end it
▶ Kill it from a different

terminal

Harder to Kill
▶ Consider the program

no_interruptions.c
▶ Ignores some common

signals
▶ Need to use the big stick for

this one:
kill -9 1234 OR
pkill -9 a.out
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States of a Living Process

▶ Note inclusion of
Kernel/OS here

▶ Interrupt and Sys
Calls start running
code in the operating
system

▶ Interrupt/Signal can
come from software
or hardware

▶ Context switch
starts running another
process, only happens
when one process is
safely tucked in and
put to sleep

Source: Design of the Unix Operating System by Maurice Bach
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Recall: Program Memory

▶ What are the 4 memory areas to a C program we’ve discussed
OR that you know from previous courses?

▶ Give an example of how one creates variables/values in each
area of memory
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Answers: Program Memory
▶ What are the 4 memory areas to a C program we’ve discussed

OR that you know from previous courses?
1. Stack: automatic, push/pop with function calls
2. Heap: malloc() and free()
3. Global: variables outside functions, static vars
4. Text: Assembly instructions

▶ Give an example of how one creates variables/values in each
area of memory

1 #include <stdlib.h>
2 int glob1 = 2; // global var
3 int func(int *a){ // param stack var
4 int b = 2 * (*a); // local stack var
5 return b; // de-allocate locals in func()
6 }
7 int main(){ // main entry point
8 int x = 5; // local stack var
9 int c = func(&x); // local stack var

10 int *p = malloc(sizeof(int)); // local stack var that points into heap
11 *p = 10; // modify heap memory
12 glob1 = func(p); // allocate func() locals and run code
13 free(p); // deallocate heap mem pointed to p
14 return 0; // deallocate locals in main()
15 }
16 // all executable code is in the .text memory area as assmebly instructions

12



More Detailed Process Memory

Source: Unix Systems Programming, Robbins & Robbins
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Yet more detailed view (Link)
A detailed picture of the virtual memory image, by Wolf Holzman
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Unix Processes In Memory

Source: Tutorials Point

▶ Separate Memory Image for
Each Process

▶ OS + Hardware keeps
processes inside their own
address space

▶ Consequence for program
dynamic memory allocation?

▶ Problems with running
system calls?

This picture should bother you
Shows a gross simplification but will suffice until later when we
discuss Virtual Memory system which is maintained by the OS
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Exercise: Memory Problems in C Programs
What you’re up against

▶ Stack problems: References to stack variables that go away
▶ Segmentation Faults: Access memory out of bounds for whole program,

via heap or via stack
▶ Null pointers dereference: Often results in a segfault as NULL translates to

address 0x0000 which is off limits
▶ Use of uninitialized: variables don’t have values by default, assign or get

something random
▶ Memory Leaks: malloc() memory that is not used but never free()’d,

program gobbles more and more memory
▶ Examine results of running overflow.c, EXPLAIN OUTPUT

Solutions
▶ Don’t program in C
▶ Use a tool to help identify and fix problems
▶ Valgrind → FREE for Linux Programs

16



Code for overflow.c
1 // overflow.c: program traverses memory that it really ought not to by
2 // walking off the end of an array into parts unknown.
3
4 #include <stdio.h>
5 int main(int argc, char *argv[]){
6 char a[3] = {'A','B','C'};
7 int i = 0;
8 while(1){
9 printf("%c",a[i]);

10 i++;
11 if(i%40 == 0){
12 printf("\n");
13 }
14 }
15 return 0;
16 }
17
18 // ## COMPILE AND RUN
19 // > gcc overflow.c
20 // > ./a.out
21 // ABC..^@....E.....*V^@^@ ...^?^@^@X.^?^@^@^@^@^@^@.
22 // ^@^@^@9..*V^@^@.....^?^@^@^@^@^@^@^@^@^@^@..K..|..
23 // V^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^
24 // ......M.....

17



Valgrind: Memory Tool on Linux and Mac
▶ Valgrind catches most memory

errors
▶ Use of uninitialized memory
▶ Reading/writing memory after it

has been free’d
▶ Reading/writing off the end of

malloc’d blocks
▶ Memory leaks

▶ Source line of problem happened
(but not cause)

▶ Super easy to use, installed on lab
machines

▶ Slows execution of program way
down

▶ Usually install on Linux via
> sudo apt install valgrind

> gcc -g badmemory.c
> ./a.out
-714833203
0
1
4
9
16
0
1
...
5
6
7
8
Segmentation fault (core dumped)
# what now??
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Valgrind on Common Problems in badmemory.c
> valgrind ./a.out
==2913308== Memcheck, a memory error detector
==2913308== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==2913308== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==2913308== Command: ./a.out
==2913308==
==2913308== Conditional jump or move depends on uninitialised value(s)
==2913308== at 0x109189: main (badmemory.c:6)
==2913308==
0
1
4
9
==2913308== Invalid write of size 4
==2913308== at 0x1091D2: main (badmemory.c:11)
==2913308== Address 0x4a43050 is 0 bytes after a block of size 16 alloc'd
==2913308== at 0x483877F: malloc (vg_replace_malloc.c:309)
==2913308== by 0x1091AA: main (badmemory.c:9)
...
8
==2913308== Invalid read of size 4
==2913308== at 0x10924E: main (badmemory.c:20)
==2913308== Address 0x0 is not stack'd, malloc'd or (recently) free'd
==2913308== Process terminating with default action of signal 11 (SIGSEGV):
==2913308== dumping core
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Debuggers

▶ There comes a day when printf just isn’t enough
▶ On that day you will start compiling with -g to turn on the

debugger
▶ Then you will run gdb myprog, set some breakpoints, and get

to the root of the problem
▶ Debuggers are covered in earlier CSCI courses (like CSCI

2021); refer to those materials to review / refresh
https://www-users.cs.umn.edu/~kauffman/2021/gdb
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Communicating Information to Programs

▶ Often programs need info from the outside world
▶ What file to read/write, # of iterations to run, verbose/quiet

output, report immediately, shutdown gracefully etc.
▶ A variety of mechanisms exist to convey such info to a

program
1. Command Line Arguments
2. Environment Variables
3. Signals
4. Input/Output system calls and libraries

▶ Will now discuss 1 & 2 which are often used at program
startup

▶ Alluded to Signals (#3) earlier (SIGKILL, SIGSTOP);
Will discuss Signals in more detail later

▶ I/O calls (#4) will come soon (next lecture)
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Exercise: Command Line Arguments
int main(int argc, char *argv[])

2-arg version of main() will be set up to have number of
arguments and array of strings in it by whatever started it

> cat print13.c
#include <stdio.h>
int main(int argc, char *argv[]){
printf("%s\n",argv[1]);
printf("%s\n",argv[3]);

}
> gcc -o mine print13.c
> ./mine -c 10 2.0
-c
2.0 argc is 4 in this case

Print Args
Write a quick C program which prints ALL of its argv elements as
strings. Print a special message if an arg is string --verbose
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Answers: Command Line Arguments

File: 04-process-environment-code/print_args.c
1 // Print all the arguments in the argv array. Prints a special message
2 // if option is --verbose.
3
4 #include <stdio.h>
5 #include <string.h>
6
7 int main(int argc, char *argv[]){
8 printf("%d args received\n",argc);
9 for(int i=0; i<argc; i++){

10 printf("%d: %s\n",i,argv[i]);
11 if( strcmp(argv[i],"--verbose") == 0){
12 printf("Turning on VERBOSE output\n");
13 }
14 }
15 return 0;
16 }
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Environment Variables

All programs can access environment variables, name/value pairs
used to communicate and alter behavior.

Shell show/set variables
Done with echo $VARNAME

> echo $PAGER
less
> PAGER=cat
> echo $PAGER
cat
> echo "'$PS1'"
'>'
> PS1='wicked$ '
wicked$
> export x=1234 # in env
> y=5678 # not

Shell env
Show all environment

> env
JAVA8_HOME=/usr/lib/jvm/java-8-openjdk
PAGER=less
PWD=/home/kauffman/4061-F2017/lectures/04-process-environment-code
HOME=/home/kauffman
BROWSER=chromium
COLUMNS=79
MAIL=/var/spool/mail/kauffman
MANPATH=:/home/kauffman/local/man:/home/kauffman/local/usr/share/man::/man:/home/kauffman/local/man:/home/kauffman/local/usr/share/man::/man
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/home/kauffman/bin:/home/kauffman/Dropbox/bin:/home/kauffman/code/bin:/home/kauffman/code/utils:.:/home/kauffman/bin:/home/kauffman/Dropbox/bin:/home/kauffman/code/bin:/home/kauffman/code/utils:.
PS1=>
x=1234
...
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C Programs and Environment Vars

▶ Global variable char **environ provides array of
environment variables in form VARNAME=VALUE, null
terminated

▶ NOT suggested to use environ directly,
▶ Instead use library functions getenv() / setenv() to

check/change
25



C Library for Environment Vars

The C Library Provides standard library functions for manipulating
environment variables.
#include <stdlib.h>

char *getenv(const char *name);
// returns pointer to value associated with name, NULL if not found

int setenv(const char *name, const char *value, int rewrite);
// sets name to value. If name already exists in the environment, then
// (a) if rewrite is nonzero, the existing definition for name is
// first removed; or (b) if rewrite is 0, an existing definition for
// name is not removed, name is not set to the new value,and no error
// occurs. return: 0 if OK, -1 on error

int unsetenv(const char *name);
// removes any definition of name. It is not an error if such a
// definition does not exist. return: 0 if OK, -1 on error

int putenv(char *str);
// str is of form NAME=VALUE, alters environment accordingly. If name
// already exists, its old definition is first removed. Don't use with
// stack strings. Returns: 0 if OK, nonzero on error.
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Exercise: Manipulate Environment Vars
Write a short C program which
behaves as indicated in the demo
▶ Prints ROCK and VOLUME

environment variables
▶ If ROCK is set to anything,

change VOLUME to “11”

Use these functions
char *getenv(const char *name);
// NULL if name not sot
// otherwise pointer to value

int setenv(const char *name,
const char *value,
int rewrite);

// Change name value pair,
// if rewrite is 1,
// overwrite previous definitions

Note the use of export to ensure child
processes see the environment variables

> unset ROCK
> unset VOLUME
> gcc environment_vars.c
> a.out
ROCK not set
VOLUME is not set
> export VOLUME=7
> a.out
ROCK not set
VOLUME is 7
> export ROCK=yes
> a.out
ROCK is yes
Turning VOLUME to 11
VOLUME is 11
> echo $VOLUME
7

Note also that the program does not
change the shell’s values for ROCK: no child
can change a parent’s values (or mind)
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Answers: Manipulate Environment Vars
See 04-process-environment-code/environment_vars.c
1 // environment_vars.c: solution to in-class exercise showing how to
2 // check and set environment variables via the standard getenv() and
3 // setenv() functions.
4 #include <stdlib.h>
5 #include <stdio.h>
6
7 int main(int argc, char *argv[]){
8
9 char *rock = getenv("ROCK");

10 if(rock == NULL){
11 printf("ROCK not set\n");
12 }
13 else{
14 printf("ROCK is %s\n",rock);
15 printf("Turning VOLUME to 11\n");
16 int fail = setenv("VOLUME","11",1);
17 if(fail){
18 printf("Couldn't change VOLUME\n");
19 }
20 }
21 char *volume = getenv("VOLUME");
22 if(volume == NULL){
23 volume = "not set";
24 }
25 printf("VOLUME is %s\n",volume);
26 return 0;
27 }
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