
CSCI 4061: Making Processes

Chris Kauffman

Last Updated:
Mon Feb 1 03:57:04 PM CST 2021

1

Logistics
Reading: Stevens and Rago, Ch 8
▶ Covers basic process creation and management functions

Assignments
▶ Lab01 / HW01: Due Mon 2/01
▶ Lab02 / HW02: Release over the weekend, focus on Process

creation and coordination
▶ Project 1: Discuss next week

Goals
▶ Complete Unix basics
▶ Creating Child Processes
▶ Waiting for them
▶ Running other programs

2

Processes

▶ Hardware just executes a stream of instructions
▶ The OS creates the notion of a process: instructions

comprising a running program
▶ Processes can be executed for a while, then paused while

another process executes
▶ To accomplish this, OS usually provides…

1. Bookkeeping info for processes (resources)
2. Ability to interrupt / pre-empt a running process to allow OS

actions to take place
3. Scheduler that decides which process runs and for how long

▶ Will discuss all of these things from a systems programming
perspective

3

Overview of Process Creation/Coordination

getpid() / getppid()
▶ Get process ID of the

currently running process
▶ Get parent process ID

fork()
▶ Create a child process
▶ Identical to parent EXCEPT

for return value of fork() call
▶ Determines child/parent

wait() / waitpid()
▶ Wait for any child to finish

(wait)
▶ Wait for a specific child to

finish (waitpid)
▶ Get return status of child

exec() family
▶ Replace currently running

process with a different
program image

▶ Process becomes something
else losing previous code

▶ Focus on execvp()
4

Overview of Process Creation/Coordination

getpid() / getppid()

pid_t my_pid = getpid();
printf("I'm proces %d\n",my_pid);
pid_t par_pid = getppid();
printf("My parent is %d\n",par_pid);

fork()
pid_t child_pid = fork();
if(child_pid == 0){
printf("Child!\n");

}
else{
printf("Parent!\n");

}

wait() / waitpid()

int status;
waitpid(child_pid, &status, 0);
printf("Child %d done, status %d\n",

child_pid, status);

exec() family
char *new_argv[] = {"ls","-l",NULL};
char *command = "ls";
printf("Goodbye old code, hello LS!\n");
execvp(command, new_argv);

5

Exercise: Standard Use: Get Child to Do Something

Child Labor
▶ Examine the file child_labor.c and discuss
▶ Makes use of getpid(), getppid(), fork(), execvp()
▶ Explain how these system calls are used

Child Waiting
▶ child_labor.c has concurrency issues: parent/child output

mixed
▶ Modify with a call to wait() to ensure parent output comes

AFTER child output
Write down your answers as a team for screen sharing
Suggestion: Copy child_labor.c to child_wait.c and modify
it to fix the concurrency problem

6

Answers: child_labor.c commentary
1 // child_labor.c: demonstrate the basics of fork/exec to launch a
2 // child process to do "labor"; e.g. run a another program via
3 // exec. Make sure that the the 'complain' program is compiled first.
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <sys/wait.h>
7 #include <unistd.h>
8
9 int main(int argc, char* argv){

10
11 // char *child_argv[] = {"complain",NULL}; // argument array to child, must end with NULL
12 // char *child_cmd = "complain"; // actual command to run, must be on path
13
14 char *child_argv[] = {"ls","-l","-ah",NULL}; // alternative argv/command swap commenting
15 char *child_cmd = "ls"; // with above to alter what child does
16
17 printf("I'm %d, and I really don't feel like '%s'ing\n",
18 getpid(),child_cmd); // use of getpid() to get current PID
19 printf("I have a solution\n");
20
21 pid_t child_pid = fork(); // clone a child
22
23 if(child_pid == 0){ // child will have a 0 here
24 printf(" I'm %d My pa '%d' wants me to '%s'. This sucks.\n",
25 getpid(), getppid(), child_cmd); // use of getpid() and getppid()
26
27 execvp(child_cmd, child_argv); // replace running image with child_cmd
28
29 printf(" I don't feel like myself anymore...\n"); // unreachable statement
30 }
31 else{ // parent will see nonzero in child_pid
32 printf("Great, junior %d is taking care of that\n",
33 child_pid);
34 }
35 return 0;
36 }

7

Answers: child_wait.c modification
1 // child_wait.c: fork/exec plus parent waits for child to
2 // complete printing befor printing itself.
3
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <sys/wait.h>
7 #include <unistd.h>
8
9 int main(int argc, char* argv){

10
11 // char *child_argv[] = {"ls","-l","-ah",NULL}; // argument array to child, must end with NULL
12 // char *child_cmd = "ls"; // actual command to run, must be on path
13
14 char *child_argv[] = {"./complain",NULL}; // alternative commands
15 char *child_cmd = "complain";
16
17 printf("I'm %d, and I really don't feel like '%s'ing\n",
18 getpid(),child_cmd);
19 printf("I have a solution\n");
20
21 pid_t child_pid = fork();
22
23 if(child_pid == 0){
24 printf(" I'm %d My pa '%d' wants me to '%s'. This sucks.\n",
25 getpid(), getppid(), child_cmd);
26 execvp(child_cmd, child_argv);
27 printf(" I don't feel like myself anymore...\n"); // unreachable
28 }
29 else{
30 int status;
31 wait(&status); // wait for child to finish, collect status
32 printf("Great, junior %d is done with that '%s'ing\n",
33 child_pid, child_cmd);
34 }
35 return 0;
36 }

8

Effects of fork()

▶ Single process becomes 2 processes
▶ Sole difference is return value from fork()
▶ All other aspects of process are copied

child_pid ?child_pid
5myint

heap_str 0x500

...
0x500 h
0x501 i
0x502 \0

...
1.23glob_doub

...

int main(){
 char *heap_str = malloc(..);
 int myint = 5;
 glob_doub = 1.23;
>> int child_pid = fork()
 if(child_pid == 0){
 myint = 19;
 }
 printf("myint: %d\n", myint);
 ...

STACK

HEAP

GLOBALS

TEXT/CODE

Process 1234

child_pid 5678child_pid
5myint

heap_str 0x500

...
0x500 h
0x501 i
0x502 \0

...
1.23glob_doub

...

int main(){
 char *heap_str = malloc(..);
 int myint = 5;
 glob_doub = 1.23;
 int child_pid = fork()
>> if(child_pid == 0){
 myint = 19;
 }
 printf("myint: %d\n", myint);
 ...

STACK

HEAP

GLOBALS

TEXT/CODE

Process 1234 (parent)

child_pid 0child_pid
5myint

heap_str 0x500

...
0x500 h
0x501 i
0x502 \0

...
1.23glob_doub

...

int main(){
 char *heap_str = malloc(..);
 int myint = 5;
 glob_doub = 1.23;
 int child_pid = fork()
>> if(child_pid == 0){
 myint = 19;
 }
 printf("myint: %d\n", myint);
 ...

STACK

HEAP

GLOBALS

TEXT/CODE

Process 5678 (child)
Before fork(): 1 process After fork(): 2 processes

9

Effects of exec()

▶ Entire Memory image of process is replaced/reset
▶ Original process Text/Code is replaced, begin new main()
▶ Successful exec() does not return to original code

some_var ?
5myint

heap_str 0x500

...
0x500 h
0x501 i
0x502 \0

...
1.23glob_doub

...

int main(){ // my program
 char *heap_str = malloc(..);
 int myint = 5;
 glob_doub = 1.23;
>> exec("ls",...);
 printf("Unreachable!\n");
 some_var = 21;
 ...

STACK

HEAP

GLOBALS

TEXT/CODE

Process 1234

?? ??
????

?? ??

...
0x500 ??
0x501 ??
0x502 ??

...
????

...

int main(...){ // ls program
>> if(argc == 1){
 MODE = SIMPLE_LIST;
 }
 else {
 ...
 }
 ...

STACK

HEAP

GLOBALS

TEXT/CODE

Process 1234
Before exec(): original code After exec(): code replaced

10

Exercise: Child Exit Status
▶ A successful call to wait() sets a

status variable giving info about
child
int status;
wait(&status);

▶ Several macros are used to parse
out this variable
// determine if child actually exited
// other things like signals can cause
// wait to return
if(WIFEXITED(status)){

// get the return value of program
int retval = WEXITSTATUS(status);

}

▶ Modify child_labor.c so that
parent checks child exit status

▶ Convention: 0 normal, nonzero
error, print something if non-zero

program that returns non-zero
> gcc -o complain complain.c

EDIT FILE TO HAVE CHILD RUN 'complain'
> gcc child_labor_wait_returnval.c
> ./a.out
I'm 2239, and I really don't feel
like 'complain'ing
I have a solution

I'm 2240 My pa '2239' wants me to 'complain'.
This sucks.

COMPLAIN: God this sucks. On a scale of 0 to 10
I hate pa ...

Great, junior 2240 did that and told me '10'
That little punk gave me a non-zero return.
I'm glad he's dead
>

11

Answers: Child Exit Status
1 // child_wait_returnval.c: fork/exec plus parent waits for child and
2 // checks their status using macors. If nonzero, parent reports.
3
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <sys/wait.h>
7 #include <unistd.h>
8
9 int main(int argc, char* argv){

10 char *child_argv[] = {"./complain",NULL}; // program returns non-zero
11 char *child_cmd = "complain";
12
13 printf("I'm %d, and I really don't feel like '%s'ing\n",
14 getpid(),child_cmd);
15 printf("I have a solution\n");
16
17 pid_t child_pid = fork();
18
19 if(child_pid == 0){
20 printf(" I'm %d My pa '%d' wants me to '%s'. This sucks.\n",
21 getpid(), getppid(), child_cmd);
22 execvp(child_cmd, child_argv);
23 printf(" I don't feel like myself anymore...\n"); // unreachable
24 }
25 else{
26 int status;
27 wait(&status); // wait for child to finish, collect status
28 if(WIFEXITED(status)){
29 int retval = WEXITSTATUS(status); // decode status to 0-255
30 printf("Great, junior %d did that and told me '%d'\n",
31 child_pid, retval);
32 if(retval != 0){ // nonzero exit codes usually indicate failure
33 printf("That little punk gave me a non-zero return. I'm glad he's dead\n");
34 }
35 }
36 }
37 return 0;
38 }

12

Return Value for wait() family
▶ Return value for wait() and waitpid() is the PID of the

child that finished
▶ Makes a lot of sense for wait() as multiple children can be

started and wait() reports which finished
▶ One wait() per child process is typical
▶ See faster_child.c

// parent waits for each child
for(int i=0; i<3; i++){

int status;
int child_pid = wait(&status);
if(WIFEXITED(status)){

int retval = WEXITSTATUS(status);
printf("PARENT: Finished child proc %d, retval: %d\n",

child_pid, retval);
}

}

13

Blocking vs. Nonblocking Activities
Blocking
▶ A call to wait() and waitpid() may cause calling process to

block (hang, stall, pause, suspend, so many names…)
▶ Blocking is associated with other activities as well

▶ I/O, obtain a lock, get a signal, etc.
▶ Generally creates synchronous situations: waiting for

something to finish means the next action always happens..
next (e.g. print after wait() returns)
// BLOCKING VERSION
int pid = waitpid(child_pid, &status, 0);

Non-blocking
▶ Contrast with non-blocking (asynchronous) activities: calling

process goes ahead even if something isn’t finished yet
▶ wait() is always blocking
▶ waitpid() can be blocking or non-blocking

14

Non-Blocking waitpid()
▶ Use the WNOHANG option
▶ Returns immediately regardless of the child’s status

int child_pid = fork();
int status;

// NON-BLOCKING
int pid = waitpid(child_pid, &status, WNOHANG); // specific child
OR |||||||
int pid = waitpid(-1, &status, WNOHANG); // any child

Returned pid is

Returned Means
child_pid status of child that changed / exited
0 there is no status change for child / none exited
-1 an error

Examine impatient_parent.c

15

impatient_parent.c
1 // impatient_parent.c: demonstrate non-blocking waitpid(),
2
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <sys/wait.h>
6 #include <unistd.h>
7
8 int main(int argc, char* argv){
9 char *child_argv[] = {"./complain",NULL};

10 char *child_cmd = "complain";
11 printf("PARENT: Junior is about to '%s', I'll keep an eye on him\n",
12 child_cmd);
13 pid_t child_pid = fork();
14
15 // CHILD CODE
16 if(child_pid == 0){
17 printf("CHILD: I'm %d and I'm about to '%s'\n",
18 getpid(), child_cmd);
19 execvp(child_cmd, child_argv);
20 }
21
22 // PARENT CODE
23 int status;
24 int retcode = waitpid(child_pid, &status, WNOHANG); // non-blocking wait
25 if(retcode == 0){ // 0 means child has not exited/changed status
26 printf("PARENT: 0? The kid's not done yet. I'm bored\n");
27 }
28 else{ // child has changed status / exited
29 printf("PARENT: Something happend to junior!\n");
30 if(WIFEXITED(status)){
31 printf("Ah, he Exited with code %d", WEXITSTATUS(status));
32 }
33 else{
34 printf("Junior didn't exit, what happened to him?\n");
35 }
36 }
37 return 0;
38 }

16

Runs of impatient_parent.c

> gcc impatient_parent.c
> a.out
PARENT: Junior is about to 'complain', I'll keep an eye on him
PARENT: 0? The kid's not done yet. I'm bored
CHILD: I'm 1863 and I'm about to 'complain'
> COMPLAIN: God this sucks. On a scale of 0 to 10 I hate pa ...

> a.out
PARENT: Junior is about to 'complain', I'll keep an eye on him
PARENT: 0? The kid's not done yet. I'm bored
CHILD: I'm 1865 and I'm about to 'complain'
> COMPLAIN: God this sucks. On a scale of 0 to 10 I hate pa ...

17

Exercise: Helicopter Parent
▶ Modify impatient_parent.c to

helicopter_parent.c
▶ Checks continuously on child

process
▶ Will need a loop for this…

> gcc helicopter_parent.c
> a.out
PARENT: Junior is about to 'complain', I'll keep an eye on him
Oh, junior's taking so long. Is he among the 50% of people that are below average?
Oh, junior's taking so long. Is he among the 50% of people that are below average?
...
Oh, junior's taking so long. Is he among the 50% of people that are below average?
Oh, junior's taking so long. Is he among the 50% of people that are below average?
CHILD: I'm 21789 and I'm about to 'complain'
Oh, junior's taking so long. Is he among the 50% of people that are below average?
...
Oh, junior's taking so long. Is he among the 50% of people that are below average?
Oh, junior's taking so long. Is he among the 50% of people that are below average?
COMPLAIN: God this sucks. On a scale of 0 to 10 I hate pa ...
Oh, junior's taking so long. Is he among the 50% of people that are below average?
Oh, junior's taking so long. Is he among the 50% of people that are below average?
...
PARENT: Good job junior. I only checked on you 226 times.

18

Answers: Helicopter Parent
1 // helicopter_parent.c: demonstrate non-blocking waitpid() in excess
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <sys/wait.h>
5 #include <unistd.h>
6
7 int main(int argc, char* argv){
8
9 char *child_argv[] = {"./complain",NULL};

10 char *child_cmd = "complain";
11
12 printf("PARENT: Junior is about to '%s', I'll keep an eye on him\n",
13 child_cmd);
14
15 pid_t child_pid = fork();
16
17 // CHILD CODE
18 if(child_pid == 0){
19 printf("CHILD: I'm %d and I'm about to '%s'\n",
20 getpid(), child_cmd);
21 execvp(child_cmd, child_argv);
22 }
23
24 // PARENT CODE
25 int status;
26 int checked = 0;
27 while(1){
28 int cpid = waitpid(child_pid,&status,WNOHANG); // Check if child done, but don't actually wait
29 if(cpid == child_pid){ // Child did finish
30 break;
31 }
32 printf("Oh, junior's taking so long. Is he among the 50%% of people that are below average?\n");
33 checked++;
34 }
35 printf("PARENT: Good job junior. I only checked on you %d times.\n",checked);
36 return 0;
37 }

19

Polling vs Interrupts

▶ helicopter_parent.c is an example of polling: checking on
something repeatedly until it achieves a ready state

▶ Easy to program, generally inefficient
▶ Alternative: interrupt style is closer to wait() and

waitpid() without WNOHANG: rest until notified of a change
▶ Usually requires cooperation with OS/hardware which must

wake up process when stuff is ready
▶ Both polling-style and interrupt-style programming have uses

20

Zombies…
▶ Parent creates a child
▶ Child completes
▶ Child becomes a zombie (!!!)
▶ Parent waits for child
▶ Child eliminated

All we want is the attention of a loving parent…

Zombie Process
A process that has finished, but has not been wait()’ed for by its
parent yet so cannot be (entirely) eliminated from the system. OS
can reclaim child resources like memory once parent wait()’s.
Demonstrate
Requires a process monitoring with top/ps but can see zombies
created using spawn_undead.c

21

Tree of Processes
> pstree
systemd-+-NetworkManager---2*[{NetworkManager}]

|-accounts-daemon---2*[{accounts-daemon}]
|-colord---2*[{colord}]
|-csd-printer---2*[{csd-printer}]
|-cupsd
|-dbus-daemon
|-drjava---java-+-java---27*[{java}]
| `-37*[{java}]
|-dropbox---106*[{dropbox}]
|-emacs-+-aspell
| |-bash---pstree
| |-evince---4*[{evince}]
| |-idn
| `-3*[{emacs}]
|-gdm-+-gdm-session-wor-+-gdm-wayland-ses-+-gnome-session-b-+-gnome-shell-+-Xwayland---14*[{Xwayland}]
... ...
| |-gnome-terminal--+-bash-+-chromium-+-chrome-sandbox---chromium---chromium-+-8*[chromium---12*[{chromium}]]
| | | | | |-chromium---11*[{chromium}]
| | | | | |-chromium---14*[{chromium}]
| | | | | |-chromium---15*[{chromium}]
| | | | | `-chromium---18*[{chromium}]
| | | | |-chromium---9*[{chromium}]
| | | | `-42*[{chromium}]
| | | `-cinnamon---21*[{cinnamon}]
| | |-bash---ssh
| | `-3*[{gnome-terminal-}]

▶ Processes exist in a tree: see with shell command pstree
▶ Children can be orphaned by parents: parent exits without

wait()’ing for child
▶ Orphans are adopted by the root process (PID==1)

▶ init traditionally
▶ systemd in many modern systems

▶ Root process occasionally wait()’s to “reap” zombies
22

Orphans are always Adopted

▶ Survey code in baudelair_orphans.c which demonstrates
what happens to orphans

▶ Parent exits without wait()’ing, leaving them orphaned.
▶ Adopted by root process with PID=1

> gcc baudelaire_orphans.c

> ./a.out
1754593: I'm Klaus and my parent is 1754592
1754594: I'm Violet and my parent is 1754592
1754596: (Sunny blows raspberry) 1754592
1754593: My original parent was 1754592, my current parent is 1754592
> 1754594: My original parent was 1754592, my current parent is 1
1754594: I've been orphaned. How Unforunate.
1754596: My original parent was 1754592, my current parent is 1
1754596: I've been orphaned. How Unforunate.

23

Reapers and the Subreapers
▶ Process X creates many

children, Orphans them
▶ Children of X complete,

become Zombies until…
▶ Newly assigned Parent

wait()’s for them
▶ Adoptive parent like Process

1 sometimes referred to as a
Reaper process: “reaps the
dead processes”

▶ System may designate a
Subreaper to do this per
user so orphans NOT
re-parented to process ID 1

▶ Graphical Login on Ubuntu
Linux systems usually
designates a Subreaper for
each user

Source: Cartoongoodies.com
Reaper and Orphan? More like Subreaper…

24

https://unix.stackexchange.com/questions/250153/what-is-a-subreaper-process
https://cartoongoodies.com/png_images/mandy-angry-at-the-grim-reaper/

