
CMSC330: Review and Finale

Chris Kauffman

Last Updated:
Thu Dec 7 12:10:56 PM EST 2023

1

Logistics

Goals
▶ Rust Wrap
▶ Moving Ahead
▶ Review

Kauffman OH
▶ Mon 11-Dec: 1-3pm
▶ Tue 12-Dec: 1-3pm

Previously indicated Tue OH
would not happen due to travel
but this was incorrect

Date Event
Tue 05-Dec Rust-wrap

Expression Problem
Thu 07-Dec Review Problems
Fri 08-Dec Dis: Quiz 4
Mon 11-Dec Project 8 Due

Kauffman OH 1-3pm
Tue 12-Dec Reading Day

Kauffman OH 1-3pm
Wed 13-Dec Final Exam

4-6pm
ESJ 0224

2

Beyond CMSC3330
Coursework
CMSC430 Introduction to Compilers Obvious follow-on which studies the

construction of compilers and interpreters, often taught in
Racket

CMSC433 Programming Language Technologies and Paradigms Topics vary
by instructor, usually focuses on PL features tailored to tackle
certain problems like concurrency

Self-Study
The most interesting PL’s I’ve seen in the last 10 years are. . .

Clojure A modern Lisp that runs on the Java Virtual Machine
specifically targeted at enabling concurrency within programs
and allowing coders to solve problems rather than wrestle with
the language

Julia Targeted at solving numerical problems and providing a more
efficient, nicer experience than Matlab/Octave, has a
fascinating type system which is at once dynamic with multiple
dispatch but smacks of static features like OCaml’s type system

3

Requested Topics

▶ Operational Semantics Problem
▶ Lambda Calculus: alpha conversion
▶ Lambda Calculus: beta reductions
▶ OCaml practice problems

4

Operational Semantics: StringLang Intro

Examples
{reverse,"dog"}
{concat,{suffix,2,"4321"},"JumpStreet"}
{suffix, 4, {concat,"abc",{reverse,"123"}}}

CFG
E -> {reverse,E}
E -> {concat,E,E}
E -> {suffix,N,E}
E -> "string"
N -> natural number {0,1,2,3,....}

5

Operational Semantics: StringLang Evaluation Rules
English and/or Python as a Meta Language
▶ N is a natural number like 0,1,2,. . .
▶ S is a string like "dog" or "Tachion"

Evaluation Rules
---- ---- SELF EVALUATION
S=>S N=>N for strings/nums

(Python: S2 = S1[-N:])
E1=>S1 S2 is last N chars of S1
---------------------------------- SUFFIX

{suffix, N, E1} => S2

(Python: S3=S1+S2)
E1=>S1 E2=>S2 S3 is "S1..S2"
------------------------------- CONCAT

{concat, E1, E2}=>S3

(Python: S2=S1[::-1])
E1=>S1 S2 is S1 in reverse order
--------------------------------- REVERSE

{reverse, E1}=>S

Sample Evaluations
{concat, "tri", "gun"}
=> "trigun"

{reverse, "god"}
=> "dog"

{suffix, 3, "poignant"}
=> "ant"

{concat, {suffix, 2, "hippo"}, "pular"}
=> "popular"

{concat, {reverse, {suffix, 3, "pokemon"}},
"nom"}

=> "nomnom"

6

Exercise: Operational Semantics: StringLang Derivation

??????????

===
{concat, {reverse, {suffix, 3, "pokemon"}}, "nom"} => "nomnom"

7

Answers: Operational Semantics: StringLang Derivation

=========
"pokemon" "mon"="pokemon"[-3:]
===============================
{suffix, 3, "pokemon"}=>"mon" nom="mon"[::-1]
== =====
{reverse, {suffix, 3, "pokemon"}} => "nom" "nom" "nomnom"="nom"+"nom"
===

{concat, {reverse, {suffix, 3, "pokemon"}}, "nom"} => "nomnom"

8

Lambda Calculus: Alpha Conversion

▶ Two terms that differ only in the names bound variables are
considered identical if they only differ in the names of bound
variables

▶ Examples:
1. λx.x ≡ λy.y (Both Identity Function)

L x.x = L y.y
2. λx.λy.x y ≡ λq.λr.q r

L x.L y.x y = L q.L r.q r
3. λa.λb.z a ≡ λt.λu.z t

L a.L b.z a = L t.L u.z t

▶ Lingo: “Terms are equal up to renaming of bound variables.”
▶ Church dubbed this “Alpha-Conversion”: consistently rename

bound variables to reveal structural equivalence
▶ NOTE: free variables do not get renamed during Alpha

Conversion

9

Lambda Calculus: Alpha Conversion Exercise
In the following us variable names 0, 1, 2... when Alpha
Converting.

1. Alpha Convert
L a.L b.z a
L t.L u.z t
to show that they are equivalent.

2.Alpha Convert the following

L x.L y.L x.L y.y x =alpha=> ??

3.Determine if the following two terms are “Equal up to renaming
of bound variables”

Equal?
(L t.L u.(t a) u) (L t.t (L a.t))
(L x.L z.(x a) z) (L a.a (L z.a))

10

Lambda Calculus: Alpha Conversion Answers
In the following us variable names 0, 1, 2... when Alpha
Converting.

1. Alpha Convert
L a.L b.z a =alpha=> L 0.L 1.z 0
L t.L u.z t =alpha=> L 0.L 1.z 0
to show that they are equivalent.

2. Alpha Convert the following
L x.L y.L x.L y.y x =alpha=> L 0.L 1.L 2.L 3.3 2

3. Determine if the following two terms are “Equal up to
renaming of bound variables”
(L t.L u.(t a) u) (L t.t (L a.t)) =alpha\
(L 0.L 1.(0 a) 1) (L 2.2 (L 3.2)) <------+
(L 0.L 1.(0 a) 1) (L 2.2 (L 3.2)) <------+
(L x.L z.(x a) z) (L a.a (L z.a)) =alpha/
YES equivalent

11

Lambda Calculus: Beta Reduction

▶ Lambda Calculus has only 1 operation: Apply a Function
(Abstraction)

▶ Two adjacent terms indicate an Application
▶ t1 t2 is t1 Applied to t2
▶ If t1 is an abstraction of L v. body the application may be

reduced by
1. Removing the L v and t2
2. Replacing all occurrences v in body with t2

▶ This is a single reduction step
▶ In Full Beta Reduction terms are reduced until the no

further reductions are possible at which point the term is in
Beta Normal Form

12

Exercise: Evaluation Strategies

▶ While evaluating a Lambda calculus term, there may be
several choices of function applications to reduce

▶ An Evaluation Strategy dictates which term to reduce; we
discussed 2 common Evaluation Strategies

1. Call by Name (Lazy Eval)
2. Call by Value (Eager Eval)

Questions to conisder
1. What’s the difference between these two evaluation strategies?
2. When reducing a lambda term to Beta Normal Form, does it

matter which evaluation strategy / order is used?

13

Answers: Evaluation Strategies
Questions to consider:

1. What’s the difference between these two evaluation strategies?
▶ Call by Name / Lazy Eval: Reduce the leftmost, outermost

term first.
▶ Call by Name / Lazy Eval: If the term is an Application,

reduce the right-hand side first. Then reduce the leftmost,
outermost term first.

Will want examples of these for concreteness.
2. When reducing a lambda term to Beta Normal Form, does it

matter which evaluation strategy / order is used?
It’s comlicated: In most cases, evaluation order won’t matter.
However, if the term “loops/recurses” through certain
combinators, some orders of evaluation may diverge infinitely.
The Church-Rossner Theorem proves that if all sequences of
reductions that converges to a normal form converge to the
same normal form.

14

https://en.wikipedia.org/wiki/Church%E2%80%93Rosser_theorem

Exercise: Beta Reduce by Eval Strategy

Reduce each term to Beta Normal Form using the evaluation
strategy indicated. Show each reduction step Determine if the
ending terms are the same for equivalent starting terms.
LAZY 1 EAGER 1

(L z.z) ((L y.y) x) (L z.z) ((L y.y) x)

LAZY 2 EAGER 2
(L x.(L y.y) ((L z.z) (x x))) (L x.(L y.y) ((L z.z) (x x)))

15

Answers: Beta Reduce by Eval Strategy

Reduce each term to Beta Normal Form using the evaluation
strategy indicated. Show each reduction step Determine if the
ending terms are the same for equivalent starting terms.
LAZY 1 EAGER 1

(L z.z) ((L y.y) x) (L z.z) ((L y.y) x)
^ ^^^^^^^^^^^ ^ ^

=> (L y.y) x => (L z.z) x
^ ^ ^ ^

=> x => x

LAZY 2 EAGER 2
(L x.(L y.y) ((L z.z) (x x))) (L x.(L y.y) ((L z.z) (x x)))

^ ^^^^^^^^^^^^^^^ ^ ^^^^^
=> (L x.((L z.z) (x x))) => (L x.(L y.y) (x x))

^ ^^^^^ ^ ^^^^^
=> (L x.(x x)) => (L x.(x x))

Yes : equal starting terms reduce to the same Beta Normal Form
for both Lazy/Eager strategies

16

Reminders on Diverging Definitions

(L x.(L y.y) ((L z.z) (x x))) - Value or Reducable?

▶ This term is interesting as it is a “Function” (abstraction)
▶ The definitions for Lazy/Eager evaluation in CMSC330 is to

perform reductions “inside” the function
▶ I have observed that reliable, published sources discussing

Lambda Calculus would not reduce this term according to
their definitions of the same evaluation strategies

▶ I’ll be working to adjust the culture of the class to favor
definitions used by reliable, published sources of information
on the subject

▶ But, if faced with an exam question on this, reduce away. . .

17

Additional Reduction Examples to consider

Try these with Lazy/Eager evaluation strategies for additional
practice / discussion.
1. (L a.b a) ((L x.y z))

2. (x (L y. y)) ((L z.z) a)

3. (x ((L y. y) b)) ((L z.z) a)

3 is interesting. . .

18

Exercise: A Previous Rust Problem

1 fn make_vec() -> Vec<&String>{
2 let s = String::from("abc");
3 let mut v = vec![];
4 v.push(&s);
5 return v;
6 }
7 fn use_make_vec() {
8 let v = make_vec();
9 println!("v[0]: {}",v[0]);

10 }

Compiling the nearby Rust code
yields an error rustc suggests
the problem may be resolved by
changing the first function
prototype to:
fn make_vec() -> Vec<&'static String>{

1. What is the essence of the problem?
2. Will the suggested change fix the code?

19

Answers: A Previous Rust Problem
1 fn make_vec() -> Vec<&String>{
2 let s = String::from("abc");
3 let mut v = vec![];
4 v.push(&s);
5 return v;
6 }
7 fn use_make_vec() {
8 let v = make_vec();
9 println!("v[0]: {}",v[0]);

10 }

Compiling the nearby Rust code
yields an error rustc suggests
the problem may be resolved by
changing the first function
prototype to:
fn make_vec() -> Vec<&'static String>{

1. What is the essence of the problem?
make_vec() allocates a Vector and a String, adds a Reference to the
String into the Vector, then attempts to return the Vector. The String
will be dropped leading to the Vector containing a dangling reference.
rustc sees this and call a foul.

2. Will the suggested change fix the code?
No: if the prototype is changed, rustc will instead complain that the
lifetime of the String ref is not the same as the return type. The
fundamental problem is that this is dangerous so Rust won’t allow it.
Adding the String directly (not as a ref) would cause the Vector to own
the String data leading to success with mild changes of types.

20

Nothing Ever Ends

▶ What you learned will recur in your career at some point and
demonstrate whether you learned it well the first time or need
another pass.

▶ Some of it will change in the future and make you feel old.
▶ Expect this and stay determined.

21

Conclusion

It’s been a hell of a semester.
I’m proud of all of you.
Keep up the good work.
Stay safe. Happy Hacking.

22

