
CMSC330: The Expression Problem

Chris Kauffman

Last Updated:
Tue Dec 5 12:26:11 AM EST 2023

1



Logistics

Reading
The Rust Programming
Language
▶ Official tutorial guide from

Rust foundation
▶ Chapters 1-10 should be

sufficient for the course

Goals
⊟ Datatypes and Traits
□ A word on Lifetimes
□ Extras
□ Optional: The Expression

Problem

Date Event
Tue 05-Dec Rust-wrap

Expression Problem
Thu 07-Dec Review Problems
Fri 08-Dec Dis: Quiz 4
Mon 11-Dec Project 8 Due
Tue 12-Dec Reading Day
Wed 13-Dec Final Exam

4-6pm
ESJ 0224

2

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/


Content Note

▶ The following topics will NOT be on the exam
▶ They are very interesting though. . .

3



The Expression Problem (Extensibility Problem)
Q: How well can a programming language do these two tasks

(1) Extend Functions
Add a function that works
on existing data types
without modifying those
datatypes

(2) Extend Types
Add a datatype that works
with existing functions
without changing those
functions

Functions

func1() func2()

D
at
at
yp
es

ty
pe

1
ty

pe
2

✓ ✓

✓✓

func1() func2()

✓ ✓

✓✓

Functional Programming

✓

✓

func3()

ty
pe

1
ty

pe
2

Add func3() with
cases for type1, 
type2, easily extends
functions without
changing data types

Functions

meth1() meth2()
D
at
at
yp
es

C
la

ss
1

S
ub

cl
as

2

✓ ✓

✓✓

Object-Oriented Programming

? ?ty
pe

3 func1() / func2() must be 
modified and recompiled 
to add cases for type3

✓ ✓

✓✓

Adding meth3() would
require altering Class1
and Subclass2 then 
recompiling them

subclass3 extends one of
existing classes, can inheret
or add own meth1() / meth2()

meth1() meth2() meth3()

C
la

ss
1

S
ub

cl
as

2
S

ub
cl

as
3

✓✓

?

?

A: Traditional Statically Typed Functional and OO Languages
favor one or the other task and suffer for the other

4



Expression Problem in Statically Typed Languages

▶ Java, OCaml suffer classic symptoms of the Expression
Problem: good at either extending functions or datatypes, but
not both at once

▶ Haskell’s Type Classes partially solve the Expression Problem1

▶ Rust DOES NOT fully solve the expression problem as it
forbids adding impl for datatypes outside of the crate in
which they are defined (see extend_string_fail.rs for an
example)

▶ Likely there are other approaches but the absence of widely
known solutions means this may be a limitation of statically
typed system

It feels like if Rust lifted the impl-within-crate restriction they’d
have a full solution but they must have reasons for it. . .

1The inspiration for the grid-based diagram comes from Eli Bendersky’s
Post about the Expression Problem which provides additional code and detail

5

https://eli.thegreenplace.net/2018/more-thoughts-on-the-expression-problem-in-haskell/
https://eli.thegreenplace.net/2016/the-expression-problem-and-its-solutions/
https://eli.thegreenplace.net/2016/the-expression-problem-and-its-solutions/


Trait Restrictions in Rust
Why does rust restrict implementations of traits to have at least one of
“trait in crate” or “type in crate”?

This restriction is part of a property called coherence, and more
specifically the orphan rule, so named because the parent type
is not present. This rule ensures that (A) other peoples code
cant break your code and vice versa. Without the rule, (B) two
crates could implement the same trait for the same type, and
Rust wouldnt know which implementation to use.
– The Rust Programming Language, Ch 10.2

Commentary
▶ (A) seems false: if Rust’s Iterator trait were altered to require a

previous() function as well, all code based on it would break.
▶ (B) is true, my crate implementing Iterator for i32 could conflict

with your crate’s implementation of it, so the policy favors
preventing potential conflicts over enabling possible convenience

6

https://doc.rust-lang.org/book/ch10-02-traits.html


Expression Problem in Dynamically Typed Languages

▶ Most dynamic languages dodge the Expression Problem as
data is open, no compiler to satisfy, allow for dynamic
behavior

▶ Example: Python “Monkey Patching” allows runtime
alteration of functions withing classes, addition of new
functions, etc.

▶ Julia is Dynamically typed but has many properties similar to
Statically Typed languages, features Multiple Dispatch to
solve the Expression Problem

▶ Clojure is a dynamically typed language but provides 2
distinct solutions to the Expression Problem: Multimethods
and Protocols

7

https://www.geeksforgeeks.org/monkey-patching-in-python-dynamic-behavior/
https://docs.julialang.org/en/v1/manual/methods/
https://clojure.org/reference/multimethods
https://clojure.org/reference/protocols

