
CMSC330: Rust Basics

Chris Kauffman

Last Updated:
Thu Dec 7 09:14:29 AM EST 2023

1

Logistics
Reading: The Rust Programming Language
▶ Official tutorial guide from Rust foundation
▶ Chapters 1-10 should be sufficient for the course

Assignments
▶ Project 8: Rust Spell Checker

Released Due Mon 11-Dec
▶ Quiz 4: Fri 08-Dec during Discussion

Goals
⊠ Introduction to Rust
⊠ Language Features / Relations
⊠ Memory Ownership
⊟ Datatypes and Traits
□ Extras

2

https://doc.rust-lang.org/book/

Announcements: None

3

A Short History of Rust

Graydon Hoare according to
Crunchbase

Rust Logo

Rustacean “Ferris”, mascot

▶ Started ~2006 as a side project by Graydon Hoare
while working at Mozilla (makes of Firefox and
other fine tools)

▶ Started after a software failure incapacitated an
elevator at Hoare’s apartment requiring him to
climb 21 flights of stairs and inspiring a desire for
a “safe” programming language

▶ Compiler originally written in OCaml, became
self-hosting in 2010

▶ After Mozilla divested developers in 2020, Rust
Foundation was created to manage language and
community

▶ Stack Overflow Developer Survey named Rust the
“most loved programming language” every year
from 2016 to 2023 (Wikip)

▶ Hoare named Rust “. . . after a group of
remarkably hardy fungi” (MIT Tech Review)

4

https://www.crunchbase.com/person/graydon-hoare
https://en.wikipedia.org/wiki/Rust_(programming_language)#Adoption
https://www.technologyreview.com/2023/02/14/1067869/rust-worlds-fastest-growing-programming-language/#:~:text=He%20named%20it%20Rust%2C%20after,over%2Dengineered%20for%20survival.%E2%80%9D

Exercise: Collatz Computation An Introductory Example

▶ collatz.rs prompts for an integer and computes the Collatz
Sequence starting there

▶ The current number is updated to the next in the sequence via
if cur is EVEN cur=cur/2; else cur=cur*3+1

▶ This process is repeated until it converges to 1 (mysteriously)
or the maximum iteration count is reached

▶ The code demonstrates a variety of Python features and
makes for a great crash course intro

▶ With a neighbor, study this code and identify the features you
should look for in every programming language

5

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Exercise: Collatz Computation An Introductory Example
1 // collatz.rs:
2 use std::io;
3 use std::str::FromStr;
4
5 const VERBOSE : bool = true;
6
7 fn collatz (start: i32, maxsteps: i32)
8 -> (i32,i32)
9 {

10 let mut cur = start;
11 let mut step = 0;
12 if VERBOSE {
13 println!("start: {start}");
14 println!("Step Current");
15 println!("{step:3} {cur:5}");
16 }
17 while cur != 1 && step < maxsteps {
18 step += 1;
19 if cur % 2 == 0{
20 cur = cur / 2;
21 }
22 else{
23 cur = cur*3 + 1;
24 }
25 if VERBOSE {
26 println!("{step:3} {cur:5}");
27 }
28 }
29 (cur,step) // return val
30 // return (cur,step); // alt
31 }

32 fn main() { // entry point
33 println!("Collatz start val: ");
34 let mut instr = String::new();
35 match io::stdin().read_line(&mut instr) {
36 Err(why) => panic!("Input failed: {}",why),
37 Ok(_) => {} // freak on error
38 }; // proceed on an ok
39 instr.pop(); // remove trailing \n
40 let start = match i32::from_str(instr.as_str()) {
41 Err(why) => panic!("Bad int '{instr}': {}",why),
42 Ok(anint) => anint // freak on error
43 }; // o/w return the int
44 let (last,steps) = collatz(start, 500);
45 println!("Reached {last} after {steps} iters");
46 }

Look for. . . Comments,
Statements/Expressions, Variable Types,
Assignment, Basic Input/Output, Function
Declarations, Conditionals, Iteration, Aggregate
Data, Library System

6

Answers: Collatz Computation An Introductory Example

⊠ Comments: // comment to end of line

⊠ Expressions x+1 a&&b t<m, Statements if xyz { ... } or
println!("Hi"); statement lines end with semicolons

⊠ Variable Types: i32 integer, boolean, some types mentions others inferred
⊠ Assignment: via let x = expr; or let mut x = expr; or x = 3*x+1;

⊠ Basic Input/Output: println!() and . . . oh boy. . .
io::stdin.read_line()

⊠ Function Declarations:
fn funcname(param1: type1, param2: type2) -> RetType {

⊠ Conditionals (if-else): if cond { ...} else {...} ; also match{ }
conditions

⊟ Iteration (loops): clearly while cond {...}, also for iter {}

⊟ Aggregate data (arrays, records, objects, etc): (rust,has,tuples) and
Variant(types)

⊟ Library System: use std::io; is like import std.io

7

Compile and Run
>> rustc collatz.rs

>> file collatz
collatz: ELF 64-bit LSB pie executable, x86-64,
version 1 (SYSV), dynamically linked, ...

>> collatz
Collatz start val:
10
start: 10
Step Current

0 10
1 5
2 16
3 8
4 4
5 2
6 1

Reached 1 after 6 iters

>> ./collatz
Collatz start val:
apple
thread 'main' panicked at collatz.rs:66:17:
Bad int 'apple': invalid digit found in string
note: run with `RUST_BACKTRACE=1` environment
variable to display a backtrace

▶ rustc compiles code with a
main() method to
executables named after the
file

▶ collatz fails on bad input
like apple via the panic!()
macro though code running
an elevator may wish to take
a different tack. . .

8

Rust’s Prime Directive: Be Safe!
▶ Avoid memory bugs at all costs
▶ Provide mechanisms for error handling but force programs to

contend with errors
▶ If failing, fail predictably

Memory Safe Languages
▶ You may be told that Rust is a memory safe language; this is true and

often said to contrast it to C/C++ which may segfault as they give the
power of unrestricted pointer operations

▶ You might respond to the speaker that there are a few other memory safe
languages such as Java, Python, OCaml, Scheme, Racket, Clojure, Shell
Script, Haskell, Fortran, Javascript, etc. and basically all other languages
that don’t have unrestricted pointer operations

▶ You might indicate to the speaker that perhaps they meant Rust is
memory safe without using a Garbage Collector which is unusual

▶ You might end by mentioning that if being memory safe is good and lots
of PLs have that quality, having a Garbage Collector might also be good
and make a language more usable

9

https://arxiv.org/abs/2110.01098

Borrowing Ideas from C/C++
▶ No Garbage Collector: GC costs at runtime so avoid it

▶ C/C++ handle this with manual management, e.g.
malloc()/free() or new / delete

▶ Rust follows a different model
▶ Aim for “zero cost abstractions”: high-level looking code

compiles down to very efficient machine instructions, no
runtime penalties

▶ Use of the <T> syntax for generic / templated code
▶ Similar syntax for namespace navigation

some::package::file::run_function(a,b)
▶ Shared with C++: allow operator overloading so that a+b can

be overloaded for any types
▶ Shared with C++: variety of ways to pass parameter, as is, as

refs, as mutable refs, etc.
▶ Shared with C++: add a LOT of stuff to the language; small,

tightly integrated features are less fun than playing with
everything and the kitchen sink

10

Borrowing Ideas from OCaml

▶ Default to immutable data as it is more easily shared and
enables concurrency more readily

▶ Explicitly label data as mut to indicate mutability which
comes with benefits and costs

▶ Strongly typed
▶ Some degree of type inference supported but certain places,

particularly function signatures, require explicit typing
▶ Some degree of polymorphism supported though the model is

closer to C++ Templates / Java Generics
▶ Support Pattern match-ing with rich variant/algebraic types,

called enum in Rust; use these in the standard library

11

Borrowing Ideas from Python

▶ Provide a featurful array-like data structure (List in Python,
Vector in Rust)

▶ Favor iterators in for loops and ensure that most standard
container types support them for ease

▶ Like Python (and Java), makes use of code annotations such
as #[test] to denote a function is a test case or
#[derive(Debug)] to automatically derive some
functionality for a data type associated with debugging

12

Borrowing Ideas from Java

▶ Uses method dispatch:
▶ Rust is NOT object-oriented, but then again Gosling would

have removed class inheritance from Java given a second
chance

▶ Java also features Interfaces which are a collection of methods
implemented by a class

▶ Rust follows this model: data types impl collections of
methods referred to as Traits allowing the data type to be
used any place something with the given trait is present

13

https://www.infoworld.com/article/2073649/why-extends-is-evil.html
https://www.infoworld.com/article/2073649/why-extends-is-evil.html
https://www.infoworld.com/article/2073649/why-extends-is-evil.html
https://docs.oracle.com/javase/tutorial/java/concepts/interface.html

Borrowing Ideas from Lisp

▶ Provide for powerful macro creation that enables manipulation
of the syntax tree during compilation

▶ Macros like println!(...) aren’t functions, rather they
generate code in place which can make things more efficient
and allow for compile time safety with convenience such as in
println!("x: {x}")

14

Cautions and Disclosures
Cautions
▶ Rust is 17 years old with wide public attention for <10 years
▶ During that time it has undergone radical changes with much

breakage to older code, a trend that is likely to continue
▶ It combines many features from many other languages
▶ It’s only feature of real note is its memory model: no Garbage

Collector, manage memory at compile time as possible

Disclaimer
I don’t know Rust particularly well but I don’t like what I see. In the
name of safety, it makes the creation of linked data structures like lists
and trees nearly impossible. I don’t think this is a good tradeoff and
would not select Rust for my projects at this time.

I will try hard not to left my negative view overly influence our discussion
as there are still interesting things to learn.

But it doesn’t have a ruddy REPL. WTFM?
15

Ownership of Memory Locations

Ownership is Rust’s most unique feature and has deep im-
plications for the rest of the language. It enables Rust to
make memory safety guarantees without needing a garbage
collector, so its important to understand how ownership
works.
– The Rust Programming Language, Ch 4

Also from the book:
▶ Each value (memory block) in Rust has an owner
▶ There can only be one owner at a time
▶ When the owner goes out of scope, the value will be dropped

(de-allocated)

16

https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html

Ownership Relates to Scoping
▶ PLs provide bindings of names to values in memory
▶ Each PL has semantics about when names go out of scope

and what becomes of the memory bound to it
▶ Below example shows a simple example in 3 related languages
▶ Rust is similar to others with Stack/Heap allocation BUT

detects when values are no longer reachable and immediately
de-allocates them

▶ This strategy has myriad consequences that we’ll discuss
// C version
void print_str(){

int i = 5;
char s[6] = "hello";
char *h = malloc(6);
strcpy(h,"there");
printf("%d %s %s\n",

i,s,h);
}
// i stack-allocated
// s stack-allocated
// automatically de-allocated
// h heap-allocated
// h out of scope: heap ref
// is lost, memory leak

// Java version
public static void printStr(){

int i = 5;
String s = "hello";
String h = new String("there");

System.out.printf("%d %s %s\n",
i,s,h);

}
// i stack-allocated
// s refs const
// automatically de-allocated
// h heap-allocated
// h out of scope, subject
// to be GC'd later

// Rust Version
fn printStr(){

let i = 5;
let s = "hello";
let h = String::new("there");

println!("{i} {h} {s}")

}
// i stack-allocated
// s refs static str
// automatically de-allocated
// h heap-allocated
// h out of scope, immediately
// "dropped" to de-allocate it

17

Ownership Basics

To get a start on Ownership,
examine ownership_basics.rs
which has a series of 4 examples

1. i32 integers as params
2. Broken String ownership
3. Working String ownership

with cloning
4. Working String ownership

with references
These will start to give a sense of
the rules the Rust compiler
enforces on ownership

>> rustc ownership_basics.rs

>> ./ownership_basics
2 plus 3 is 5
3 plus 2 is 5
two plus three is two_three
two plus three is three_two

18

Ownership Basics 1 / 4: Copy-able Values

▶ Some types like i32 (32-bit signed integers) copy their bits
when assigned or passed as parameters1

▶ Identical semantics to C / Java / OCaml
▶ Copying means everyone owns distinct copies

1 // ownership_basics: working int version
2 fn add2(x: i32, y: i32) -> i32{
3 let z = x+y;
4 return z;
5 }
6 fn show_add() { // ALWAYS WORKS
7 let a = 2; // allocate ints
8 let b = 3;
9 let ab = add2(a,b); // pass ints as params

10 let ba = add2(b,a); // due to copying, retain ownership
11 println!("{a} plus {b} is {ab}");
12 println!("{b} plus {a} is {ba}");
13 }

1Rust denotes this “copyable” quality with its Copy Trait which is
implemented by i32 the type of integers. We’ll look at Traits and supporting
them in the near future though likely not Copy.

19

https://doc.rust-lang.org/std/marker/trait.Copy.html

Ownership Basics 2 / 4: Problems
▶ Strings in Rust are heap-allocated, passed as pointers to the

heap location just as in C / Java / OCaml
▶ Only one owner of String can exist and ownership can

change hands
▶ This breaks the code below

1 // ownership_basics: string append Version 1 (broken)
2 fn show_append() {
3 let s = String::from("two"); // allocate strings
4 let t = String::from("three");
5 let st = append2(s,t); // append2() assumes ownership of s and t
6 let ts = append2(t,s); // ownership lost and compiler forbids re-use
7 println!("{s} plus {t} is {st}");
8 println!("{s} plus {t} is {ts}");
9 }

10 fn append2(x: String, y: String) -> String{
11 let mut z = String::new();
12 z.push_str(&x);
13 z.push_str(&y);
14 return z;
15 } // x,y now dropped and de-allocated

20

Ownership Basics 2.5 / 4: Compiler Errors

rustc ownership_basics.rs generates some loud errors
>> rustc ownership_basics.rs
error[E0382]: use of moved value: `t`

--> ownership_basics.rs:35:20
|

33 | let t = String::from("three");
| - move occurs because `t` has type `String`, which does not implement
| the `Copy` trait

34 | let st = append2(s,t); // append2() assumes ownership of s and t
| - value moved here

35 | let ts = append2(t,s); // ownership lost and compiler forbids re-use
| ^ value used here after move

These are frequent in Rust development, requires learning to follow
the compiler and “borrow checker” rules

21

Ownership Basics 3 / 4: Cloning

A fix for the ownership problems is to Clone the Strings using the
clone() method from its Clone Trait, identical in name and
semantics to Java’s idea of Clone.

1 // ownership_basics: string append Version 2 (works via cloning)
2 fn show_append() {
3 let s = String::from("two");
4 let t = String::from("three");
5 let st = append2(s.clone(),t.clone()); // append2() gets its own copies
6 let ts = append2(t.clone(),s.clone()); // of s and t
7 println!("{s} plus {t} is {st}");
8 println!("{s} plus {t} is {ts}");
9 }

10 fn append2(x: String, y: String) -> String {
11 let mut z = String::new();
12 z.push_str(&x);
13 z.push_str("_");
14 z.push_str(&y);
15 return z;
16 }

Cloning works but is dissatisfying as data must be duplicated every
time a function is called. Rust provides a more efficient alternative.

22

https://doc.rust-lang.org/std/clone/trait.Clone.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Cloneable.html

Ownership Basics 4 / 4: References
A more efficient fix for the ownership problem is to adjust the
function parameters and call site to use a Reference with notation
▶ &myvar at a call site or in an assignment

generates a reference to myvar
▶ param:&String for a function parameter

type of param is a String reference
1 // ownership_basics: string append Version 3 (works via refs)
2 fn show_append() {
3 let s = String::from("two");
4 let t = String::from("three");
5 let st = append2(&s,&t); // append2() gets references to s/t
6 let ts = append2(&t,&s); // show_append() retains ownership
7 println!("{s} plus {t} is {st}");
8 println!("{s} plus {t} is {ts}");
9 }

10 fn append2(x: &String, y: &String) -> String {
11 let mut z = String::new(); // params x,y are refs to String
12 z.push_str(&x);
13 z.push_str("_");
14 z.push_str(&y);
15 return z;
16 }

Working with refs is as essential to Rust as pointers are to C
23

References

Reference in Rust use the & syntax as in
{

call_func(&some_var); // pass a ref
let x = &some_var; // assign a ref

}
{

let myvar : &some_type = ...; // variable has ref type
}

fn myfunc(param: &some_type) {} // param has ref type

▶ Refs are like pointers in they give access to the data pointed at
▶ They differ from full pointers in that they do not give the ability to end the life

of a memory block which is restricted to the owner of the block
▶ Refs allow borrowing of memory blocks

24

Exercise: Motivating References from C

What is wrong with the following C program

1 void use_arr(int *arr, int len){
2 printf("arr: [");
3 for(int i=0; i<len; i++){
4 printf("%d ",arr[i]);
5 }
6 printf("]\n");
7 }
8
9 void use_up_arr(int *arr, int len){

10 printf("arr: [");
11 for(int i=0; i<len; i++){
12 printf("%d ",arr[i]);
13 }
14 printf("]\n");
15 free(arr);
16 }

17 int main(int argc, char *argv[]){
18 int len = 5;
19 int *a = malloc(sizeof(int) * len);
20 for(int i=0; i<len; i++){
21 a[i] = (i+1)*10;
22 }
23
24 use_arr(a,len);
25 use_up_arr(a,len);
26 use_arr(a,len);
27
28 return 0;
29 }

25

Answers: Motivating References from C

// c_mem_problems.c:
void use_up_arr(int *arr, int len){

printf("arr: [");
for(int i=0; i<len; i++){

printf("%d ",arr[i]);
}
printf("]\n");
free(arr);

}
int main(int argc, char *argv[]){

int len = 5;
int *a = malloc(sizeof(int) * len);
for(int i=0; i<len; i++){

a[i] = (i+1)*10;
}

use_arr(a,len); // okay
use_up_arr(a,len); // free'd
use_arr(a,len); // not okay

return 0;
}

▶ A classic use after free error
▶ 2nd call to use_arr()

accesses a free()’d block
▶ Java / OCaml don’t allow

user free()’s, GC does this

26

Exercise: How Rust “Fixes” the C Mistakes
1 // rust_owner_problems.rs:
2 fn use_arr(arr: Vec<i32>){
3 print!("arr: ["); // arr owned
4 for x in arr{
5 print!("{x} ");
6 }
7 println!("]");
8 } // arr dropped
9

10 fn use_up_arr(arr: Vec<i32>){
11 print!("arr: ["); // arr owned
12 for x in arr{
13 print!("{x} ");
14 }
15 println!("]");
16 } // arr dropped
17
18 fn main(){
19 let len = 5;
20 let mut a = vec![];
21 for i in 0..len {
22 a.push((i+1)*10);
23 }
24 use_arr(a); // ownership lost
25 use_up_arr(a); // compiler error
26 use_arr(a);
27 }

Side Notes
▶ Check out vec![] macro to create Vector
▶ push(x) to add on to a vector
▶ Iteration over a range via start..stop

Ownership
▶ Rust fixes the C problem by passing

ownership of a memory block to functions
by default

▶ Once passed into the first function, a is
lost and cannot be used

>> rustc rust_owner_problem.rs
error[E0382]: use of moved value: `a`

--> rust_owner_problem.rs:29:14
25 | use_arr(a); // ownership lost

| - value moved here
26 | use_up_arr(a); // compiler error

| ^ value used here after move

What’s the fix for this in Rust
27

Answers: How Rust “Fixes” the C Mistakes
1 // rust_owner_borrow.rs:
2 fn use_arr(arr: &Vec<i32>){
3 print!("arr: ["); // arr borrowed
4 for x in arr{
5 print!("{x} ");
6 }
7 println!("]");
8 } // arr not dropped
9

10 fn use_up_arr(arr: &Vec<i32>){
11 print!("arr: ["); // arr borrowed
12 for x in arr{
13 print!("{x} ");
14 }
15 println!("]");
16 } // arr not dropped
17
18 fn main(){
19 let len = 5;
20 let mut a = vec![];
21 for i in 0..len {
22 a.push((i+1)*10);
23 }
24 use_arr(&a); // ownership retained
25 use_up_arr(&a); // ownership retained
26 use_arr(&a); // ownership retained
27 } // a is now dropped

Fixes
27 | use_arr(a); // ownership lost

| - value moved here
28 | use_up_arr(a); // compiler error

| ^ value used here after move
|

note: consider changing this parameter type in
function `use_arr` to borrow instead if owning the
value isn't necessary

▶ Adjust parameter to be
reference types

▶ Adjust calls pass references
to functions

▶ References do not affect
ownership nor cause drops
(deallocation)

28

Mutable References

▶ Synatx &mut x may be used in place of & to indicate
reference may be mutated

▶ Multi-threaded programs are restricted to use only 1 mutable
reference at a time OR as many immutable refs as desired

1 // mut_ref.rs:
2 fn add_some(vec: &mut Vec<i32>){
3 for i in 1..=3 {
4 vec.push(i); // alters param vector
5 }
6 }
7 fn main(){
8 let mut v = vec![10,11];
9 add_some(&mut v); // pass with ability to mutate

10 add_some(&mut v); // and again
11 println!("{:?}",v); // use hand debug print formating
12 }

>> rustc mut_ref.rs
>> ./mut_ref
[10, 11, 1, 2, 3, 1, 2, 3]

29

Vectors
Vectors are Rust’s goto data structure, an extensible array in the same
vein as Python Lists / Java ArrayList

1 // vec_demo.rs:
2 let mut v : Vec<i32> = Vec::new(); // required type annotation for new()
3 v.push(10); v.push(20); v.push(30); // extend vector
4 let mut v2 = vec![10,20,30]; // vec! macro is commonly used
5 v2[1] = 40; // standard [] indexing
6 println!("v2[1]: {}", v2[1]);
7
8 // Oh so many ways to iterate
9 for x in &v2 { // implicit slice

10 print!("{x} ");
11 }
12 for x in &v2[..] { // explicit slice
13 print!("{x} ");
14 }
15 for x in v2.iter() { // explicit iterator
16 print!("{x} ");
17 }
18 for i in 0..v2.len(){ // traditional via range
19 print!("v2[{i}]: {} ",v2[i]);
20 }
21 for (i,x) in v2.iter().enumerate() { // iterator + index
22 print!("v2[{i}]: {x} ");
23 }
24 // Vectors are Generic / Polymorphic; type annotation below is optional
25 let vs1 : Vec<&str> = vec!["katz:","all","your","bass","..."];
26 let vs2 = vec!["are:","belong","to","us"];
27 ... 30

Slices in Rust
▶ Vectors support slices, a borrowed portion of a data structure
▶ Allows for efficient borrowing of portions of Vectors / DS’s
▶ Syntax for slice types is. . . interesting

Type Rust Parlance Elems C Equiv
&[i32] slice of i32 i32 array of int
&[&str] slice of &str &str array of char[]
&str string slice (bleck!) char plain char[]

1 // vec_demo.rs: SLICES: borrowed portions of vectors
2 let v100: Vec<i32> = (0..100).collect(); // range to vector
3 println!("v100[50]: {}",v100[50]);
4
5 let v20_40: &[i32] = &v100[20..40]; // SLICE of vector w/ explicit
6 for x in v20_40 { // type annotation
7 print!("{x} ");
8 }
9 let v50_70 = &v100[50..70]; // SLICE omitting type annotation

10 for x in v50_70 {
11 print!("{x} ");
12 }
13 let vs = // vector of primitive str
14 vec!["katz:","all","your","bass","are","belong","to","us"];
15 let sl_vs : &[&str] = &vs[1..4]; // SLICE of vector, type annotation optional
16 for x in sl_vs { // iterate over slice
17 print!("{x} ");
18 }
19 ... 31

str and String 1 / 2

The str type, also called a string slice, is the most prim-
itive string type. It is usually seen in its borrowed form,
&str. It is also the type of string literals, &’static str.
. . . A &str is made up of two components: a pointer to
some bytes, and a length.
– Rust Docs for str
The String type is the most common string type that has
ownership over the contents of the string. It has a close
relationship with its borrowed counterpart, the primitive
str.
– Rust Docs for String

32

https://doc.rust-lang.org/std/primitive.str.html
https://doc.rust-lang.org/std/string/struct.String.html

str and String 2 / 2
1 // string_vs_str.rs:
2 fn main(){
3 let a = "hello world"; // primitive str not meant to grow in size
4 let b = String::from("hello world"); // standard String buffer of characters
5
6 let mut c = "goodbye mut"; // both can be made mutable
7 let mut d = String::from("goobye mut");
8
9 for (i,ch) in c.chars().enumerate() { // iterate over characters in a str

10 println!("c[{i}]: {ch}"); // .iter() pops of chars while
11 } // .enumerate() gives index,char pairs
12 for (i,ch) in d.chars().enumerate() { // likewise for characters in a String
13 println!("d[{i}]: {ch}");
14 }
15
16 let cs1 : &str = &c[2..11]; // slice of &str is &str
17 let ds1 : &str = &d[2..11]; // slice of String is &str
18
19 let clen = c.len(); // length methods for both str and String
20 let dlen = d.len();
21
22 // c.push_str(" again"); // no ability to grow a str
23 d.push_str(" again"); // methods for String
24
25 // c.replace_range(0..1,"And "); // no supported method as str isn't meant to grow
26 d.replace_range(0..0,"And "); // grow
27 }

33

Ownership and Data Structures

▶ vec_owner.rs provides a demo of several uses for how
ownership changes wrt to the Vector data structure

▶ In some cases, ownership of data transfers to the Vector:
memory block will be de-allocated when the Vector is
de-allocated

▶ In other cases, Vector only contains a reference to data owned
elsewhere

▶ Some versions and lines are commented out as they are
rejected by the compiler: being able to explain why these
won’t compile is good practice for. . .
▶ Writing your own code
▶ Exam Questions which might ask for an explanation

34

Exercise: Ownership within Data Structures

Data structures like Vectors can be composed of
▶ Owned data: de-allocated when DS is dropped
▶ Borrowed data: data persists when DS is dropped

1 // vec_ownership.rs:
2 //////// A ////////
3 let s = String::from("abc"); // string is born
4 let mut v = vec![]; // vec is born
5 v.push(&s); // string ref from vec
6 println!("s: {s}"); // okay as a ref is passed
7 println!("v[0]: {}",v[0]); // okay as s is in scope
8
9 //////// B ////////

10 let s = String::from("abc"); // string is born
11 let mut v = vec![]; // vec is born
12 v.push(s); // vec now owns string
13 // println!("s: {s}"); // ERROR: s lost ownership
14 println!("v[0]: {}",v[0]); // okay as v owns string

What is the inferred type of v in A / B examples?

35

Answers: Ownership within Data Structures
Data structures like Vectors can be composed of
▶ Owned data: de-allocated when DS is dropped
▶ Borrowed data: data persists when DS is dropped

What is the inferred type of v in A / B examples?
1 // vec_ownership.rs:
2 //////// A ////////
3 let s = String::from("abc"); // string is born
4 let mut v = vec![]; // vec is born
5 v.push(&s); // string ref from vec
6 println!("s: {s}"); // okay as a ref is passed
7 println!("v[0]: {}",v[0]); // okay as s is in scope
8
9 // v: Vec<&String> "Vector of String Refs"

10
11 //////// B ////////
12 let s = String::from("abc"); // string is born
13 let mut v = vec![]; // vec is born
14 v.push(s); // vec now owns string
15 // println!("s: {s}"); // ERROR: s lost ownership
16 println!("v[0]: {}",v[0]); // okay as v owns string
17
18 // v: Vec<String> "Vector of Strings", owns strings

36

Exercise: Issues in DS Ownership
▶ Examples C-F of code involve a Vector owning a String
▶ Will each example compile or will rustc find ownership issues?

This is tricky but is good practice for exam questions

1 // vec_ownership.rs:
2 //////// C ////////
3 fn make_vec() -> Vec<String>{
4 let s = String::from("abc");
5 let mut v = vec![];
6 v.push(s);
7 return v;
8 }
9 fn use_make_vec() {

10 let v = make_vec();
11 println!("v[0]: {}",v[0]);
12 }
13
14 //////// D ////////
15 fn make_vec() -> Vec<&String>{
16 let s = String::from("abc");
17 let mut v = vec![];
18 v.push(&s);
19 return v;
20 }
21 fn use_make_vec() {
22 let v = make_vec();
23 println!("v[0]: {}",v[0]);
24 }

25 // vec_ownership.rs:
26 //////// E ////////
27 fn make_vec() -> Vec<&'static String>{
28 let s = String::from("abc");
29 let mut v = vec![];
30 v.push(&s);
31 return v;
32 }
33 fn use_make_vec() {
34 let v = make_vec();
35 println!("v[0]: {}",v[0]);
36 }
37
38 //////// F ////////
39 fn vec_ref(s: &String) -> Vec<&String>{
40 let mut v = vec![];
41 v.push(s);
42 return v;
43 }
44 fn use_vec_ref(){
45 let s = String::from("abc");
46 let v = vec_ref(&s);
47 println!("v[0]: {}",v[0]);
48 } 37

Answers: Issues in DS Ownership 1 / 2

1 // vec_ownership.rs:
2 //////// C //////// OKAY
3 fn make_vec() -> Vec<String>{ // CORRECT: return vec of String
4 let s = String::from("abc"); // string is born
5 let mut v = vec![]; // vec is born
6 v.push(s); // string moves into vec, vec owns it
7 return v; // safe to return
8 }
9 fn use_make_vec() {

10 let v = make_vec();
11 println!("v[0]: {}",v[0]);
12 }
13
14 //////// D //////// ERROR
15 fn make_vec() -> Vec<&String>{ // ERROR: unable to resolve types
16 let s = String::from("abc"); // string is born within function
17 let mut v = vec![]; // vec is born
18 v.push(&s); // ref to string from vec, string still owned by s
19 return v; // ERROR: returning from func would de-allocate s
20 } // but refs remain to it in v
21 fn use_make_vec() {
22 let v = make_vec();
23 println!("v[0]: {}",v[0]);
24 }

38

Answers: Issues in DS Ownership 2 / 2

25 // vec_ownership.rs:
26 //////// E //////// ERROR
27 fn make_vec() -> Vec<&'static String>{
28 let s = String::from("abc"); // for (D), compiler suggests adding &'static
29 let mut v = vec![]; // which is a "lifetime" for the string. This
30 v.push(&s); // does not help in this case as the fundamental
31 return v; // error is that s's String needs to be owned by
32 } // the escaping vector
33 fn use_make_vec() {
34 let v = make_vec();
35 println!("v[0]: {}",v[0]);
36 }
37
38 //////// F //////// OKAY
39 fn vec_ref(s: &String) -> Vec<&String>{ // string owned from elsewhere
40 let mut v = vec![]; // vec is born
41 v.push(s); // vec refers to string, doesn't own it
42 return v; // safe to return as string isn't owned by v
43 }
44 fn use_vec_ref(){
45 let s = String::from("abc"); // string is born
46 let v = vec_ref(&s);
47 println!("v[0]: {}",v[0]);
48 }

39

Defining New Data Types: struct and enum

▶ Basic data type declaration are laid out like in OCaml
▶ struct : like an OCaml record (or C struct)
▶ enum : like an OCaml Algebraic (Variant) types

▶ There are few surprises, just slightly different syntax
▶ Next few slides demo basic aspects
▶ Then we’ll proceed to Rust’s version of methods via

impl-ementations

40

struct : Creating New Types with Fields
1 // struct_enum_demo.rs:
2 struct Omelet { // a new data type with fields
3 cook_time: f32, // floating point field
4 is_cooked: bool, // boolean field
5 ingredients: String, // string field
6 }
7
8 fn use_omelet(){ // demonstrates use of Omelet type
9 println!("===USE OMELET====");

10 let om = Omelet { // create an immutable Omelet
11 cook_time: 2.5,
12 is_cooked: false,
13 ingredients: String::from("bacon cheddar")
14 }; // print out a field
15 println!("om.ingredients: {}",om.ingredients);
16
17 let mut mom = Omelet { // create a fully mutable Omelet
18 cook_time: 0.0,
19 is_cooked: false,
20 ingredients: String::from("spinach swiss")
21 };
22 mom.cook_time += 4.999; // alter fields
23 mom.is_cooked = true;
24 mom.ingredients.push_str(" mushroom");
25 println!("mom.ingredients: {}",mom.ingredients);
26 println!("mom.cook_time: {:.2}",mom.cook_time);
27 }

41

enum: New Data Type with Variants
1 enum Breakfast { // like OCaml's algebraic types, 4 variants of type
2 None, // Variant with no additional data
3 Meager(String), // Variant with String data
4 Hearty(Omelet), // Variant with Omelet data
5 Misc(u32,String) // Variant with pair of u32 and String
6 }
7 use Breakfast::*; // allow bare names of variants like Meager()
8
9 fn breakfast_count(br: &Breakfast) -> u32 {

10 return match br { // match on the variants of Breakfast
11 None => 0,
12 Misc (count,_) => *count, // read about * on your own time
13 _ => 1 // all other variants
14 };
15 }
16 fn use_breakfast(){
17 let dog_br = Meager(String::from("kibble"));
18 let md_br = Misc(4,String::from("cups oatmeal"));
19 let ck_br = Hearty(Omelet{cook_time: 5.00, is_cooked: true,
20 ingredients: String::from("ham swiss")});
21 let br_vec = vec![dog_br, md_br, ck_br, None]; // all of Breakfast type
22 for (i,x) in br_vec.iter().enumerate() { // iterate over array handling
23 let desc = match x { // each variant in a match
24 None => "none", Meager(_) => "meager",
25 Hearty(_) => "hearty", Misc(_,_) => "misc",
26 };
27 let count = breakfast_count(&x);
28 println!("{i}: {desc}, count: {count}");
29 }
30 }

42

Implementing “Methods” with impl Blocks

▶ Rust is NOT object-oriented but
can feel that way due to its data
syntax and types which feature
the “dot” notation used in OO
languages

▶ Rust favors an approach similar to
C++: define data type (struct)
in one place, define associated
functions in another place via
impl construct

▶ Rust supports various syntatic
“sugar” around impl such as
“method” invocation

▶ Several impl can exist for a
struct allowing associated
functions to be defined across
several files (though this is
atypical)

struct Omelet { // a new data type
...;

}

impl Omelet { // "methods" for Omelets
// construct an Omelet
fn new(ingr: &str) -> Omelet {

...
}
// cook an omelet
fn cook(&mut self, time: f32){

...
}

}
...
impl Omelet{ // MORE "methods" for Omelets

// add an ingredient
fn add_ingredient(&mut self, ingr: &str){

...
}
// check for overcooked
fn is_overcooked(&self) -> bool {

return self.cook_time > 8.0;
}
// non-"method" function
fn denver_ingredients() -> &'static str {

return "ham cheese peppers";
}

}
43

impl_demo.rs Highlights 1 / 2
// impl_demo.rs:
struct Omelet { cook_time: f32, is_cooked: bool, ingredients: String}

impl Omelet { // "methods" for Omelet struct
fn new(ingr: &str) -> Omelet { // construct an Omelet

return Omelet{cook_time: 0.0,
is_cooked: false,
ingredients: String::from(ingr)};

}
fn cook(&mut self, time: f32){ // cook an omelet

self.cook_time += time; // note the first param: &mut self
if self.cook_time >= 5.0 { // which is assigned by the compiler

self.is_cooked = true; // to &mut Omelet based on the context
}

}
}
fn main(){

let ingr = Omelet::denver_ingredients(); // invoke function in Omelet namespace
let mut denver = Omelet::new(ingr); // typical "constructor" invocation

Omelet::cook(&mut denver, 0.25); // direct invocation of cook() function
denver.cook(0.25); // "dot" invocation of cook() function
denver.add_ingredient(" mushrooms"); // "dot" invocation of function

while !denver.is_overcooked() { // literally overdo it
denver.cook(0.5);

}

...
44

Aside: “methods” and Methods
Methods are similar to functions: we declare them with the fn key-
word and a name, they can have parameters and a return value, and
they contain some code thats run when the method is called from
somewhere else. Unlike functions, methods are defined within the
context of a struct (or an enum or a trait object, which we cover in
Chapter 6 and Chapter 17, respectively), and their first parameter is
always self, which represents the instance of the struct the method
is being called on.
– The Rust Programming Language, Ch 5.3

▶ Rust “methods” are mostly just functions
▶ Proper Methods are a family of functions with

overriding usually through sub-classing and
dynamic dispatch to select one of several possible
functions at runtime based on the specific type of
the data being used though alternatives exist

▶ Rust does not have sub-classing / overriding
▶ It does have a dynamic dispatch facility that is

still evolving and requires use of smart pointers
like Box and Trait Objects

45

https://doc.rust-lang.org/book/ch05-03-method-syntax.html
https://doc.rust-lang.org/stable/book/ch17-02-trait-objects.html

Traits: Data Supporting Common Operations
▶ Common idea: data with operations XYZ can be used here (in

this function, in this algorithm, in this data structure, etc)
▶ Common XYZ examples are (1) ability to compare data to

sort sorting it and (2) ability to write/read a representation of
data to files for saving/loading

▶ Pure OO-Solution accomplishes this with a class hierarchy,
abstract parent classes with concrete child classes extending
parents and overriding necessary methods, has downsides
acknowledged by folks who know OO well

▶ Alternative: denote XYZ is present without inheritance
▶ interface in Java, Type Class in Haskell, Protocol in Clojure
▶ Trait in Rust

▶ A Trait is a list of functions that must be present that data
can implement to be compatible with other functionalities

▶ A function or data structure type can be annotated to accept
only parameters that implement Traits

▶ As Java uses Classes a lot, Rust uses Traits alot!
46

https://www.infoworld.com/article/2073649/why-extends-is-evil.html

(A) New Trait / New Datatype Implementations

A reasonably common case: new Datatype and new Trait
// trait_impl.rs:
struct Omelet { // new datatype Omelet

cook_time: f32, is_cooked: bool, ingredients: String,
}

impl Omelet { // "methods" for Omelet
fn new(ingr: &str) -> Omelet { ... }
fn cook(&mut self, time: f32){ ... }

}

trait Updateable { // a new trait Updateable
fn update(&mut self);

}

impl Updateable for Omelet { // (A) new Trait Updateable, new type Omelet
fn update(&mut self){

self.cook(0.25); // update an Omelet by cooking it a bit
}

}

47

(B) Existing Trait / New Datatype Implementations
Common allows New datatypes to use existing Rust functionality
impl Iterator for Omelet{ // (B) existing Trait Iterator, new datatype Omelet

type Item = (); // iterator returns unit, denoted ()
fn next(&mut self) -> Option<Self::Item> { // required "method" for Iterator

if self.is_cooked { // when cooked, stop iterating
return None;

}
else {

self.cook(0.5); // iterate by cooking a little and returning
return Some(()); // some of unit

}
}

}

impl Display for Omelet{ // (B) existing Trait Display, new datatype Omelet
fn fmt(&self, f: &mut Formatter<'_>) -> Result {

return write!(f,"Omelet{{ cook_time: {:.2}, is_cooked: {}, ingredients: {}}}",
self.cook_time, self.is_cooked, self.ingredients);

}
} // allows Omelet to be println!()'d

fn main() {
...

for _ in &mut omelet { // iterate on omelet due to Iterator
println!("Iterating on omelet");
// println!("omelet: {}",&omelet); // ERROR: mut ref to omelet already owned above

}
println!("Finished omelet: {}",omelet); // print formatted omelet due to Display

... 48

(C) New Trait / Existing Datatype Implementations

Somewhat common: teach an old data type a new trick
trait Updateable { // a new trait Updateable

fn update(&mut self);
}

impl Updateable for i32 { // (C) new Trait Updateable, existing type i32
fn update(&mut self){

*self = *self + 1;
}

}

impl Updateable for String { // (C) new Trait Updateable, existing type String
fn update(&mut self){

self.push('_');
}

}

49

(D) Existing Trait / Existing Datatype Implementations
ERROR: prevented by Rust for reasons that are not explained
▶ Suggested work around is to define a new type that mirrors

existing type and use it instead
▶ Somewhat dissatisfying but so it goes

impl Iterator for String { // (D) exiting Trait Iterator, existing type String
type Item = char; // ERROR: this case is not allowed by rust
fn next(&mut self) -> Option<Self::Item> {

return self.pop(); // return Some(last_char) or None
}

}

>> rustc trait_impl.rs && trait_impl
error[E0117]: only traits defined in the current crate can be implemented for types defined outside of the crate

--> trait_impl.rs:83:1
|

83 | impl Iterator for String { // (D) exiting Trait Iterator, existing type i32
| ^^^^^^^^^^^^^^^^^^------
| | |
| | `String` is not defined in the current crate
| impl doesn't use only types from inside the current crate
|
= note: define and implement a trait or new type instead

error: aborting due to previous error

50

Rust Trait Implementation Summary
Rust Traits

Trait Type Ok? Notes
A New New Yes Can implement MyTrait for MyData
B Exists New Yes Can implement Iterator for MyData
C New Exists Yes Can implement MyTrait for i32
D Exists Exists Sub Cannot implement Iterator for i32

Can create new subtype for i32
to implement Iterator

May return to discussion of extending data types and available
functions later time permitting, hopefully discuss the Expression
Problem

Java Interfaces Are Similar
Interf Class Ok? Notes

A New New Yes Can implement MyInterf for MyClass
B Exists New Yes Can implement Iterator for MyClass
C New Exists Sub Must subclass Object implement MyInterf
D Exists Exists Sub Must subclass Object implement Iterator

51

Trait Usage
Rust Type system allows for the use of Traits to constrain Generic
(polymorphic) functions to accept only data with certain methods

1 fn show_it<T:Display>(thing: T){ // accept any type with Display trait
2 println!("The thing is {}",thing);
3 }
4 ...
5 fn main(){ // show use of generic function
6 show_it("Hello");
7 show_it(1.234);
8 show_it(Omelet{cook_time:1.0, is_cooked: false,
9 ingredients: "ham cheese".to_string()});

10 }
11
12 // Alternative syntaxes for constraining types
13 fn show_it2(thing: impl Display){
14 println!("The thing is {}",thing);
15 }
16
17 fn show_it3<T>(thing: T)
18 where T: Display
19 {
20 println!("The thing is {}",thing);
21 }

NOTE: 3 separate syntaxes available to dictate data must have a
certain trait

52

Ref in Returns create Lifetime Problems
▶ A common example of ownership difficulties is the following

function from Ch 10.3 of The Rust Programming Language
1 fn longest(x: &str, y: &str) -> &str {
2 if x.len() > y.len() {
3 x
4 } else {
5 y
6 }
7 }

▶ Because a &str (string slice / ref) is returned, the borrow
checker is nervous that its underlying owned data could be
dropped prior to use.

▶ rustc needs a little re-assurance and is kind enough to ask:
>> rustc generic_lifetimes.rs

--> generic_lifetimes.rs:18:33
|

18 | fn longest(x: &str, y: &str) -> &str {
| ---- ---- ^ expected named lifetime parameter
|
= help: this function's return type contains a borrowed value,

but the signature does not say whether it is borrowed from `x` or `y`
help: consider introducing a named lifetime parameter

|
18 | fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {

| ++++ ++ ++ ++

53

https://doc.rust-lang.org/book/

Lifetimes as Generic Types
1 // generic on datatype T: constrains v / z to have a type relation
2 fn add_front<T>(v: &mut Vec<T>, z: T){
3 v.push(z);
4 v.rotate_right(1);
5 }
6
7 // generic on lifetime 'a: constrains x / y / return to have a lifetime relation
8 fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
9 if x.len() > y.len() {

10 x
11 } else {
12 y
13 }
14 }

▶ ’a is a lifetime, <’a> indicates generic func on lifetimes
▶ x: &’a str indicates x’s ref’d data has a lifetime at least

as long as ’a
▶ y and the returned &str do as well
▶ Borrow checker assuaged in that returned type will have

lifetime at least as long as parameters
▶ Obvious in this simple case to smart humans
▶ One day the compiler may get that smart too

54

’a Notation as Minimum Lifetimes

▶ Note that ’a lifetimes are best interpreted as a “minimum”
lifetime, NOT “equal” lifetimes2

▶ Example below shows shorter + longer lifetime data passed to
longest()

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str { }

// a static string: program-length lifetime
static STAT_STRING : &'static str = "Who wants to live forever?";

fn different_lifetimes() {
// a string with function-length lifetime
let string1 = String::from("abcd");

// compiles and runs fine
let result = longest(string1.as_str(), STAT_STRING);
println!("The longest string is {}", result);

}

2Rust made an unfortunate notation choice as folks coming from OCaml
have seen ’a and will instinctively assume two things that are both ’a are
equal in type

55

Linking Structures

Challenge: Define a Singly Linked List with the following
“methods”
▶ new() to create an empty list
▶ push(data) to add a new node with given data at the head
▶ pop() to remove the head node and return its data
▶ Works with any data type (generic / polymorphic)

You should feel confident of doing so in
▶ Java, Python, OCaml

How about in Rust?

56

Rust Singly Linked Lists

▶ box_linked_list.rs shows one possibility for a Rust
singly-linked list which leans towards mutability

▶ Uses combination of enum for Nodes (a la OCaml) and
struct for list itself

▶ Requires use of Box, a “smart pointer” which allows heap
allocation of arbitrary data

▶ Requires use of the mem::replace(dest,src) function to
deal with tricky ownership issues

▶ Singly linked lists which add/remove from the head are as
simple as it gets and require “Chapter 15” functionality

▶ Doubly Linked Lists, Trees, and more intense data structures
require more advanced techniques beyond our scope here

Difficulty with creating Linked Data Structures is the price of the
Safety that Rust guarantees

57

https://doc.rust-lang.org/stable/book/ch15-01-box.html
https://doc.rust-lang.org/std/mem/fn.replace.html

Highlights of box_linked_list.rs
1 enum Node { // type for nodes in list
2 Cons(i32, Box<Node>),
3 Nil,
4 }
5
6 struct List { // type for list
7 head: Node,
8 len: u32,
9 }

10
11 impl List {
12 fn push(&mut self, data: i32){ // add element at head of list
13 let stolen = // adjust ownership of head to stolen,
14 mem::replace(&mut self.head, Nil); // head becomes Nil momentarily
15 self.head = Cons(data, Box::new(stolen)); // assign head to newly allocated node
16 self.len += 1; // update length
17 }
18
19 fn pop(&mut self) -> Option<i32> { // remove head element and return it or None
20 let stolen = // steal the head making it Nil for a moment
21 mem::replace(&mut self.head, Nil); // so that it can be owned in match
22 match stolen { // match head node
23 Nil => return None, // head was Nil so remains so
24 Cons(data, box_next) => { // head was Cons
25 self.head = *box_next; // set head to next node, deref needed
26 self.len -= 1; // decrement length
27 return Some(data); // return stolen data
28 }
29 }
30 }
31 } 58

Sundries
Arithmetic Overflow Checks overflow.rs

▶ Default rustc options augment every + - * operation to check for
overflow

▶ Can be disabled with rustc -C overflow-checks=off, increases speed
of arithmetic by about 2X on simple benchmarks

▶ Opposite of C which defaults to no checks but can be enabled with
compiler options gcc -ftrapv

Sorted Print sorted_print.rs
▶ Attempted to provide a more complex example of Trait usage in

sorted_print.rs

▶ Attempts to create a generic function which accepts an iterable data
structure with elements that implements several traits

▶ Sort the data and print it
▶ Lots of strange syntax, borrowing problems abound
▶ Gave up after seeing a 3-year old Stack Overflow post with the same

errors and no answers
▶ Student contributions welcome 59

Rustlings on Rust

https://www.youtube.com/watch?v=OuSiuySr6_Q
60

https://www.youtube.com/watch?v=OuSiuySr6_Q

Further Study
▶ Rust is a BIG language and environment
▶ Immediate next steps in study would be to examine

▶ cargo the build tool and package manager
▶ Functional language features and Closures

▶ More advanced features of note include
▶ “Fearless” Concurrency with Threads and Smart Pointers
▶ Macro implementation like with vec![] and println!()
▶ Unsafe layer which is used to implement much of the standard

library, which is very safe. We promise.

Or you could wait 10 years to see if Rust stabilizes, perhaps adds a full garbage
collector, or collapses under its own complexity giving rise to a new language
that Gen-Next rabidly admires and believes is the one true way. . . at which
point you’ll be old enough to snort derisively at it and talk about what you had
to go through to learn programming

(quote "Prediction is very difficult, especially about the future!"
"-- attributed to Niels Bohr, physicist and Nobel laureate")

(quote "Fashion changes, but style endures." 'Coco 'Chanel)

(quote "God had a deadline. So he wrote it all in Lisp." 'Eternal 'Flame)
61

https://arxiv.org/abs/2110.01098
https://arxiv.org/abs/2110.01098

