
CMSC330: Operational Semantics

Chris Kauffman

Last Updated:
Tue Nov 7 09:15:45 AM EST 2023

1

Logistics

Reading
TBD

Goals
▶ Notation and Mechanics of

Operational Semantics
▶ A few Applications
▶ Practice Problems

Assignments
▶ Project 6 Posted: Lambda

Calculus Interpreter, Due 15-Nov
▶ Lexer / Parser
▶ Evaluator with. . .
▶ Eager + Lazy Reductions

▶ Exam 2 Thursday
▶ OCaml coding
▶ Lexing/Parsing/Eval
▶ Operational Semantics

OCaml Practicum?
Finishing up Operational Semantics Discussion is the priority right now but
time permitting, may post a video of solving a practical problem in OCaml.
Though there are other, Rusty, fish to fry. . .
How many of you viewed / benefited from the Python Practicum video?

2

Announcements

Exam 2 Review Session
“We will be hosting an exam 2 review session Tuesday 07-Nov at
6pm in IRB0324.”
https://piazza.com/class/lkimk0rc39wfi/post/1463

3

https://piazza.com/class/lkimk0rc39wfi/post/1463

Semantics Informally and Formally

semantics (noun): The branch of linguistics and logic
concerned with meaning. There are a
number of branches and subbranches of
semantics, including formal semantics,
which studies the logical aspects of
meaning,

Natural Languages
▶ Populations of humans ascribe a shared meaning to words
▶ Meanings vary according to population and period

4

Programming Language Semantics
What does the following syntax DO in language X?

Informal Semantics
▶ Creator of Language X describes in words what its syntax does
▶ Write a parser + interpreter / compiler that reflects that meaning
▶ May add features, update, alter semantics

Python 2005: print "Hello!" prints Hello!
Python 2009: print "Hello!" prints Syntax Error

Formal Semantics
▶ Attempts to describe with some mathematical rigor the meaning of

Programming language statements
▶ Comes in several flavors, equipped with jargon / notation
▶ Useful to quickly describe to humans small features of languages for

comparison
▶ Used by some in proofs about properties of languages and programs in

those languages, also to guide development of language interpreters

5

Operational Semantics

▶ Several flavors of Formal Semantics exist of which
Operational Semantics (OpSem) is one

▶ OpSem focuses on relating syntax of language to behavior of
an abstract machine

▶ High variance on which machine to target, how machine
operations are described, etc.
▶ Provide actual assembly instructions
▶ Describe instructions in an abstract machine
▶ Describe what would happen in another PL
▶ Describe in English sentences what is happening

▶ Referred to as the Meta-Language: description of what the
target language does

▶ The persistent character is usually the notation used which is
new and takes some getting used to

6

OpSem Notation

▶ Specifics of notation for OpSem vary
▶ Will turn to some standing slides for CMSC330 for the

moment to ensure compatibility with Prof Bakalian’s
treatment

▶ Posted as “Reference Slides”, come from Spring 2021 Offering
of CMSC330 with other materials here:
https://www.cs.umd.edu/class/spring2021/cmsc330/

7

https://www.cs.umd.edu/class/spring2021/cmsc330/

L’Maco: Practice with OpSem

L’Maco has familiar ideas with slightly unfamiliar syntax

Sample Expressions
add 5 and 2

with 7 as z
add z and 2

with add 1 and 2 as x
with add x and 7 as y
add x and y

CFG for L’Maco

W →with E as V W

E →C |V |add E and E

V →variable name
C →constant number

8

L’Maco with Environments

The following (with) and (add) rules specify the semantics of
L’Maco using Environments;
A;E1=>N1 A,V:N1; E2 => N2 A(x)=>v
--------------------------- (with) ------- (var-lookup)
A; with E1 as V E2 => N2 A; x=>v

A; E1=>N1 A; E2=>N2 N1+N2 is N3
---------------------------------- (add) ---- (constants)

A; add E1 and E2 => N3 C=>C

Note use of environments: (with) rule allows extension of
environments with new bindings

9

Exercise: L’Maco Big Derivation

Fill in the first step in this derivation
Hint: work left to right. . .

???????? ????????????????
==
[]; with add 1 and 2 as x with add x and 7 as y add x and y =>13

Reference Rules
A;E1=>N1 A,V:N1; E2 => N2 A; E1=>N1 A; E2=>N2 N1+N2 is N3
--------------------------- (with) ---------------------------------- (add)
A; with E1 as V E2 => N2 A; add E1 and E2 => N3

10

Answers: L’Maco Big Derivation

▶ According to the CFG syntax, the (with)-rule is applicable first
▶ Matches the general idea of “bind name, use name”
▶ Leads to the first steps in the derivation tree

[]; add 1 and 2=>3 [x:3]; with add x and 7 as y add x and y =>13
==

[]; with add 1 and 2 as x with add x and 7 as y add x and y =>13

Complete the Left Branch with the (add) rule

Reference Rules
A;E1=>N1 A,V:N1; E2 => N2 A; E1=>N1 A; E2=>N2 N1+N2 is N3
--------------------------- (with) ---------------------------------- (add)
A; with E1 as V E2 => N2 A; add E1 and E2 => N3

11

Answers: L’Maco Big Derivation Left Branch

==== ====
1=>1 2=>2 3 is 1+2
==================
[]; add 1 and 2=>3 [x:3]; with add x and 7 as y add x and y =>13
==

[]; with add 1 and 2 as x with add x and 7 as y add x and y =>13

Complete the Right Branch
It’s of some girth but starts with another (with)

Reference Rules
A;E1=>N1 A,V:N1; E2 => N2 A; E1=>N1 A; E2=>N2 N1+N2 is N3
--------------------------- (with) ---------------------------------- (add)
A; with E1 as V E2 => N2 A; add E1 and E2 => N3

12

Answers: L’Maco Big Derivation

========== ==== =============== ================
[x:3] x=>3 7=>7 10 is 3+7 [x:3,y:10] x=>3 [x:3,y:10] y=>10 13 is 3+10

==== ==== ========================== ==
1=>1 2=>2 3 is 1+2 [x:3] add x and 7=>10 [x:3,y:10]; add x and y=>13
================== ==
[]; add 1 and 2=>3 [x:3]; with add x and 7 as y add x and y =>13
==

[]; with add 1 and 2 as x with add x and 7 as y add x and y =>13

13

