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Logistics

Reading
Types and Programming Languages,
Ch 5 by Benjamin C. Pierce

▶ Accessible reference on Lambda
Calculus

▶ Explores other topics of interest
in theory of PLs

Lambda-Calculus and Combinators, an
Introduction by Hindley and Seldin

▶ More technical but what would
you expect from Hindley,
co-inventor of type inference

Goals
⊠ Wrap-up of Parsing / Evaluation
⊠ Begin Survey of Lambda Calculus
□ Encodings in Lambda Calculus

Assignments
▶ Project 5 up and running
▶ NFA to DFA conversion in OCaml
▶ P5 due 30-Oct
▶ In-Person Quiz 3 Moved to Next

Week (Fri 03-Nov)
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Announcements

▶ This is a rough week for UMD
▶ If you’re feeling that roughness, actively find a way to smooth

out,
▶ Pause and Rest
▶ Talk to your people, let them know how they are feeling
▶ Look after your people, find out how they are feeling
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Church-Turing Thesis

▶ Mathematicians wished to formalize the notion of an
“algorithm”

▶ A variety of different models were proposed the best know of
which are
▶ The Lambda Calculus by Alonzo Church
▶ Turing Machines by Alan Turing (originally called “a-machines”

▶ Work by Turing, Church, Stephen Kleene (ring any bells?) and
others showed that these two models of algorithms (and other
models such as one proposed by Kurt Gödel) are equivalent

▶ Result: Church-Turing Thesis, informally
▶ “X is computable if one can build a Turing machine for it”
▶ “X is computable if one can encode in the Lambda Calculus”
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Turing Machines
Natural extension of Finite Automata which we studied earlier
▶ An infinite tape with cells, each containing a symbol (e.g. 1

or 0)
▶ A head positioned at one cell
▶ A finite set of states including a starting state
▶ A finite transition table of instructions like the one below

State/Tape Head Move Next
A / 0 Write 1 L A
A / 1 - R B
B / 0 - R A
B / 1 Write 0 L C
. . . . . . . . . . . . Source: Crafting Interpreters

Turing machines appeal as smack of a mechanical device and most
real computers directly derive from these ideas including machines
Turing himself helped construct
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The Lambda Calculi

What is usually called λ-calculus is a collection of several formal
systems, based on a notation invented by Alonzo Church in the 1930s.
They are designed to describe the most basic ways that operators or
functions can be combined to form other operators.
In practice, each λ-system has a slightly different grammatical struc-
ture, depending on its intended use. Some have extra constant sym-
bols, and most have built-in syntactic restrictions, for example type
restrictions. But to begin with, it is best to avoid these complica-
tions; hence the system presented in this chapter will be the pure
one, which is syntactically the simplest.
– Hindley and Seldin in “Lambda-Calculus and Combinators, an In-
troduction”

▶ We will focus on the Pure Lambda Calculus / Untyped
Lambda Calculus

▶ OCaml follows the Simply Typed Lambda calculus more
closely but that’s beyond our scope here
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The Untyped Lambda Calculus

The Grammar
▶ Described via a CFG
▶ Quite simple with only 3

parts

T →x Variable name (1)
T →λx.T Abstraction (2)
T →T T Application (3)

▶ Variable names are any
lowercase letter x, y, z, . . .

▶ (2) referred to as “lambda
abstraction” in some cases

Examples of Derived Strings
Sometimes referred to as
“Lambda Terms”

1. y

2. λx.x

3. λy.z

4. x y

5. z z

6. x y z ≡ (x y)z
7. λx.λy.x y

8. x (λy.xyz)
9. (λx.λy.x y) a b

10. (λx.x x)(λy.y y y)
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A Few Notes on Syntax

Application Associates Left
While the CFG given is technically
ambiguous, Applications are always
assumed to be Left Associative:
▶ x y z ≡ (x y) z

▶ a b c d ≡ ((a b) c) d

Note OCaml uses the same syntax and
associativity for function application

Abstraction Scope
Abstraction body is implicitly
parenthesized
▶ λx.y x ≡ λx.(y x)
▶ λa.λb.λc.a b c ≡

λa.(λb.(λc.((ab)c)))

CFG Implies Syntax Tree
CFG implies tree
structures in lambda terms
Ex: λx.λy.x y z
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Bound and Free Variables, Combinators
▶ x is bound when it occurs as within the body of an

Abstraction λx. . . . x . . .

▶ The Abstraction is the binder of x: within its body, x will
have a specific definition assigned it

▶ If a variable is not bound, it is free
Examples:

1. λx.xy
x is bound, y is free

2. x (λy.λz.z y)
y, z are bound, x is free

Combinator: terms with no free variables / closed terms
The simplest Combinator is the Identity Function:
▶ λx.x (Identity Function)

The Pure Lambda Calculus is interesting because of
combinators. . .
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Exercise: Alpha Conversion

▶ Two terms that differ only in the names bound variables are
considered identical if they only differ in the names of bound
variables

▶ Examples:
1. λx.x ≡ λy.y (Both Identity Function)
2. λx.λy.x y ≡ λq.λr.q r

▶ Lingo: “Terms are equal up to renaming of bound variables.”
▶ Church dubbed this “Alpha-Conversion”: consistently rename

bound variables to reveal structural equivalence
Given the Abstract Syntax Tree for a Lambda Term, write an
algorithm for consistent variable renaming
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Answers: Alpha Conversion
▶ Initialize a counter i to 0 (e.g. start with Variable Zero)
▶ Perform a tree traversal (tree walk) on AST of lambda term
▶ Whenever an “Abstract” node is encountered
▶ Replace the bound variable x that appears with vi

▶ Each later appearance of x is substituted with the fresh
variable vi

▶ Increment the counter so the next variable will be vi+1: next
variable name is again fresh

λx.λy.x y ≡alpha λv0.λv1.v0 v1

λq.λq.q r ≡alpha λv0.λv1.v0 v1

You’ll likely have to code this algorithm in OCaml in an upcoming
project

11



Semantics of Lambda Calculus
▶ Have describe parts of what Lambda Calculus is via grammar,

definitions
▶ But what does it do?

▶ What are its semantics?
▶ How does on evaluate a lambda term?

There is only 1 operation: Application of functions and reduction
of the resulting terms
▶ Application of variables (atoms) doesn’t reduce further

▶ x y : nothing to do, already in normal form
▶ q r s : nothing to do

▶ Application of an Abstraction substitutes bound variables
with their parameter in the abstraction body
▶ (λx.x) y ⇒ y
▶ (λz.z z) w ⇒ w w

▶ Notation for Substitution: (λx.t1) t2 ⇒ [x 7→ t2] t1
Spoken “substitute t2 for x in t1”
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Exercise: Beta-Reduction and Normal Forms

▶ Reducing / Evaluating lambda terms is referred to as
Beta-Reduction

▶ In many cases it terminates: reach a stage where no further
reductions are possible, referred to as a Normal Form or
Beta-Normal Form

▶ Try reducing the following terms to normal form

(λx.x) a ⇒? (A)
(λx.x) (λy.y) ⇒? (B)

(((λx.λy.y x y) a) b) ⇒? (C)
(λx.x(λy.y)) (u r) ⇒? (D)
λx.(x ((λy.y) a)) ⇒? (E)

((λx.x) a) ((λx.x) b) ⇒? (F )
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Answers: Beta-Reduction and Normal Forms
Normal Forms for left-hand side shown right of ⇒ arrows

(λx.x) a ⇒ a (A)
(λx.x) (λy.y) ⇒ (λy.y) (B)

(λx.λy.y x y) a b ⇒ (λy.y a y) b (C)
⇒ b a b

(λx.x (λy.y)) (u r) ⇒ (u r) (λy.y) (D)
λx.(x ((λy.y) a)) ⇒ λx.(x a) (E)

((λx.x) a) ((λx.x) b) ⇒ a b (F )

(E) might feel a bit strange: is it really okay to Apply the Identity
function λy.y inside another abstraction?
(F ) might cause you to wonder whether to evaluate identity on a
or b first and whether it matters.
That depends on your evaluation strategy. . .
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Evaluation Strategies

▶ Beta Reduction indicates What to do (reduce application
terms via substitution)

▶ Does not specify How to do it: e.g. the order substitutions
should take place

▶ May see following technical terminology:
▶ Big Step Semantics: one “step” entirely reduces a lambda

term to normal form, focus on results
▶ Small Step Semantics: one “step” only reduces by reducing

a single function Application, focus on process
▶ Evaluation Strategies describe which function application to

“fire” to take a step towards normal form AND specify how
far to go towards a normal form
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Eager vs Lazy Evaluation Strategies

Lazy Evaluation
▶ Call by Name
▶ Reduce Leftmost /

Outermost Application first
▶ Abstractions that that are

not applied do not reduce
In short: Substitute entire
argument first into abstractions

Eager / Strict Evaluation
▶ Call by Value
▶ Evaluate “argument” to

Applications first by
reducing them to their
normal form

▶ Then perform substitution
within Abstractions

▶ Abstractions that that are
not applied do not reduce

In short: Reduce argument first
before subbing into abstractions
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Exercise: Examples of Eager vs Lazy Eval
Lazy / Non-strict Evaluation
In short: Substitute entire argument
first into abstractions

(λz.z) ((λy.y) x) (A)

⇒(λy.y) x

⇒x

(λx.λy.(y x)) ((λz.z) w) (B)
⇒???
⇒λy.(y w)

(λx.x w) ((λy.y) (λz.(λu.u) z)) (C)
⇒???
⇒???
⇒w

Eager / Strict Evaluation
In short: Reduce argument first before
subbing into abstractions

(λz.z) ((λy.y) x) (A)
⇒(λz.z) x

⇒x

(λx.λy.(y x)) ((λz.z) w) (B)
⇒???
⇒λy.(y w)

(λx.x w) ((λy.y) (λz.(λu.u) z)) (C)
⇒???
⇒???
⇒???
⇒w
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Answers: Examples of Eager vs Lazy Eval
Lazy / Non-strict Evaluation
In short: Substitute entire argument
first into abstractions

(λz.z) ((λy.y) x) (A)

⇒(λy.y) x

⇒x

(λx.λy.(y x)) ((λz.z) w) (B)

⇒λy.(y ((λz.z) w))
⇒λy.(y w)

(λx.x w) ((λy.y) (λz.(λu.u) z)) (C)

⇒((λy.y)(λz.(λu.u)z))w

⇒(λu.u)w
⇒w

Eager / Strict Evaluation
In short: Reduce argument first before
subbing into abstractions

(λz.z) ((λy.y) x) (A)
⇒(λz.z) x

⇒x

(λx.λy.(y x)) ((λz.z) w) (B)
⇒(λx.λy.(y x)) w

⇒λy.(y w)

(λx.x w) ((λy.y) (λz.(λu.u) z)) (C)

⇒(λx.x w) (λz.(λu.u) z)

⇒(λz.(λu.u) z) w

⇒(λu.u) w

⇒w
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Totally Legit Questions 1/2

Will Beta Reduction in different orders get the same result?
Yes: the Church-Rossner Theorem proves that reductions can be
done in any order and will always reach the same normal form.
Normal forms are unique under full beta reduction. Caveats
abound including “up to alpha conversion”, “full beta reduction”,
and “termination” of reduction.

19

https://en.wikipedia.org/wiki/Church%E2%80%93Rosser_theorem


Totally Legit Questions 2/2

If the reduction order doesn’t matter, why bother talking about
different evaluation strategies like Lazy vs Eager evaluation?

1. There are practical effects of eval strategies which will show
up in the Lambda Calculus associated with recursion/iteration

2. Real programming languages employ one or the other
evaluation strategy or sometimes mixtures of them
▶ The programming language Haskell employs a form of Lazy

Evaluation (Call by Name) where args to functions only
evaluated if they are applied

▶ Virtually every other PL (Python, OCaml, C, etc.) employs
Eager Evaluation (Call by Value) whee args to functions are
evaluated before passing them to functions
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Lambda Calculus Programming
▶ Recall real computers (and Turing machine) use encodings to

represent objects of interest like
0b0100_1100 = 0x4C = 76 = 'L'

▶ To illustrate computational power, must be able to encode a
minimal set of objects and functionality, usually
▶ Natural numbers (0,1,2,. . . ) and addition
▶ Booleans and conditional execution
▶ Iteration or Recursion

▶ This is relatively familiar for Real/Turing Machines
▶ Church showed encodings for each of these in the Lambda

Calculus which nets it equal power to Turing Machines
▶ Variety of other items that can be encoded in Lambda

Calculus such as Pairs, Let Bindings, subtraction,
multiplication, etc. but the above are enough to show its
computational power
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Encoding Booleans
▶ Need two distinct objects which can be used in the same

context
▶ Recall due to Alpha Conversion λx.x ≡ λy.y so they are not

distinct
▶ But these two terms are distinct and can be used in the same

contexts (e.g. abstractions that can be applied twice)

λx.λy.x : True
λx.λy.y : False

▶ Boolean values ARE if/then/else expressions, provide
conditional execution

if true then a else b if false then a else b
⇒True a b ⇒False a b

⇒(λx.λy.x) a b ⇒(λx.λy.y) a b

⇒a ⇒b
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Encoding Natural Numbers: Church Numerals

▶ Again, the informal “type” of the lambda term of all numbers
must be the same but each must be distinct

▶ Achieved via 2 Abstractions with repeated application
▶ Number of applications corresponds to numeric value

0 =λf.λx.x

1 =λf.λx.f x

2 =λf.λx.f (f x)
3 =λf.λx.f (f (f x))
n =λf.λx.<applx f n times to x>

n + 1 =λf.λx.f (n f x)
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The IsZero Function

IsZero function: λz.((z (λy.False)) True)

▶ No reason to expect you could pull this definition out of thin
air: that would be miraculous

▶ BUT demonstrates that a true/false check for a specific
numeric value is possible via Beta Reduction

IsZero 0
⇒(λz.((z (λy.False)) True)) (λf.λx.x)

⇒(((λf.λx.x) (λy.False)) True)

⇒(λx.x) True
⇒True

IsZero 2
⇒(λz.((z (λy.False)) True)) (λf.λx.f (f x))

⇒((λf.λx.f (f x)) (λy.False)) True

⇒(λx.(λy.False) ((λy.False) x)) True
⇒(λy.False) ((λy.False) True)

⇒False
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Encoding Addition

Add M N : λf.λx.(M f (N f x))

▶ Intent: use Add on two Church numerals M and N
▶ Note the informal type of Add: 2 abstractions

Add 1 2
⇒λf.λx.(1 f (2 f x))
⇒λf.λx.((λg.λy.g y) f (2 f x))

⇒λf.λx.(λy.f y) (2 f x)

⇒λf.λx.(f (2 f x))
⇒λf.λx.(f ((λg.λy.g (g y)) f x))

⇒λf.λx.(f ((λy.f (f y)) x))

⇒λf.λx.(f (f (f x)))
≡ 3

Church numeral 3 is double abstraction, apply first arg 3 times to
second 25



Exercise: Omega Combinator

Consider the following Combinator (closed lambda term)

Omega Combinator: (λx.x x)(λx.x x)

Try reducing this term. . .
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Answer: Omega Combinator
Consider the following Combinator (closed lambda term)

Omega Combinator: (λx.x x)(λx.x x)

Try reducing this term. . .

(λx.x x) (λx.x x)
⇒(λy.y y) (λx.x x)
⇒(λx.x x) (λx.x x)
⇒(λx.x x) (λx.x x)
⇒(λx.x x) (λx.x x)
...

and you’ll find the Lambda Calculus has infinite loops built in.

Perhaps it has terminating loops/recursion as well?
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Fixed Point Combinator (Y-Combinator)

Fix: λf.(λx.f(λy.x x y)) (λx.f(λy.x x y))

Like Omega, the Fix combinator has an intricate, repetitive
structure; it is difficult to understand just by reading its
definition. Probably the best way of getting some intuition
about its behavior is to watch how it works on a specific
example
– “Types and Programming Languages” by Pierce

▶ We won’t dwell to much on the intricacies of Fix
▶ TL;DR version: it allows the parameter f to replicate within

the combinator, then replicate again, then again. . .
▶ Some folks refer to this as “recursion”
▶ A more literal interpretation is just substituting the body again
▶ End game: Fixed Point Combinator makes Lambda Calculus

Turing Complete
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Fixed Point Reductions
▶ Assume you can

define multiplication
and decrement
(subtract 1)
combinators for
Church Numerals in
Lambda Calc

▶ With these and the
Fixed Point
Combinator in hand,
can define a Factorial
Function (goto
example in every
Lambda Calc tutorial)

▶ Calculations are
tedious but possible

Source: Pierce Ch 5 29



Issues with Substitutions

Name Capture
Consider the following naive reduction:

(λx.λy.x y) y

⇒λy.y y

Problematic as the y vars are different
▶ Left y is a bound variable
▶ Right y is a free variable

Due to unfortunate naming, free y is
captured by the parameter y
Remedied via Alpha-Conversion:
rename away from free variables

(λx.λy.x y) y

≡(λx.λz.x z) y

⇒λz.y z

Substitutions / Environments
When coding Lambda Calculus
interpreters, substitutions are often
facilitated with environments: a list of
variable / value pairs

(λx.t1) t2 ⇒ [x 7→ t2]t1

Substitutions stack:

(λy.(λx.t1) t2) t3 ⇒ [y 7→ t3, x 7→ t2] t1

Environments often coded as a data
structures

▶ Association Lists in simple
implementations

let env = [(name1,val1);
(name2,val2); ...]

▶ Hash tables in more sophisticated
code that needs speed for lookup
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A Note on Definitions and the Difficulties they Cause
Post 1376: In Prof. Kauffman’s slide (Lambda Calculus), p18, when we do
exercise C with an Eager Evaluation in Lambda Calculus. Why would the
answer be calculated that way?
TA: You are correct that the notes are not an Eager Evaluation, and the first
step should have been to evaluate the rightmost expression.
(Lx.x w) ((Ly.y) (Lz.((Lu.u) z)))
^-e1-^ ^----------e2----------^

Eager, evaluate e2 first
(Ly.y) (Lz.((Lu.u) z)
^-e3-^ ^----e4-----^

Eager, evaluate e4 first
Kauffman: I disagree. You are using a different definition of Eager Evaluation
than what I presented.

▶ Pierce’s “Call by Value”: e4 is a value, does not reduce
Equivalent to let foo n = 1+2+n;; and don’t evaluate 1+2 until the
function is actually called

▶ Hicks’s “Call by Value”: descend into e4 and reduce its body
Equivalent to let foo n = 1+2+n;; AND perform partial evaluation /
compiler optimization to transform it to let foo n = 3+n;;
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References for Definitions
“Pierce”
Types and Programming Languages, Ch 5 by Benjamin C. Pierce

▶ Defines Call by Value Evaluation Strategy with Lambda terms as values,
no partial evaluation

▶ Book on programming languages and types developed with input from an
array of PL researchers, targeted at grad students studying programming
language theory, self-contained text with references, code
implementations, etc.

▶ E.g. a published textbook, an authoritative source

“Hicks”
These slides: https://www.cs.umd.edu/class/spring2021/cmsc330/
lectures/24-lambda-calc-1.pdf

▶ A past offering of CMSC330
(https://www.cs.umd.edu/class/spring2021/cmsc330/)

▶ Anwar Mamat and Michael Hicks listed as instructors, both are now at
Amazon in web services development

▶ No author attributed to slides, no references in slides, no peer or editor
review; not wrong, just less authoritative
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How about on Project 6 and Quizzes / Exams?

To avoid confusion, we will avoid test cases in which partial
evaluation would lead to different results.
The behavior of reducing (Lz.((Lu.u) z) is unspecified: it may
or may not reduce further.
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