
CMSC330: Advanced Language Processing

Chris Kauffman

Last Updated:
Wed Oct 18 10:50:56 PM EDT 2023

1

Logistics

2

Exercise: Subtraction Trees

Consider these two parse trees for the given expression
let parsetree = parse_tokens (lex_string "10-2-3") in ...;;

(* TREE A *) (* TREE B *)
Sub(Const 10, Sub(Sub(Const 10,

Sub(Const 2, Const 2),
Const 3));; Const 3);;

1. What are the arithmetic results of evaluating each of them?
2. Which do you expect to result from our previous parsers?
3. Which gives the “correct” result according to standard rules of

arithmetic?

3

Answers: Subtraction Trees
Consider these two parse trees for the given expression
let parsetree = parse_tokens (lex_string "10-2-3") in ...;;

(* TREE A *) (* TREE B *)
Sub(Const 10, Sub(Sub(Const 10,

Sub(Const 2, Const 2),
Const 3));; Const 3);;

1. What are the arithmetic results of evaluating each of them?
A = 11, B = 5

2. Which do you expect to result from our previous parsers?
A has been the standard behavior of parsers from lecture lab

3. Which gives the “correct” result according to standard rules of
arithmetic?
B is the standard interpretation for arithmetic with
left-to-right evaluation

4

Right Associativity vs Left Associativity in Parsing

▶ Chained operators like 1+2+3+4 have so far yielded
“right-heavy” trees: the right branch grows deeply

▶ This is appropriate for right associative operators (like raising
to a power) and commutative operators (order independent)
operators like addition and multiplication BUT. . .

▶ Familiar operators like Subtraction and Division are left
associative:

10 − 3 − 2 − 1 ≡ (((10 − 3) − 2) − 1) = 4

▶ Leads to several irritations:
▶ Can address this in a CFG but. . .
▶ Recursive descent parsers require special care reflect

left-associativity in the trees they generate

5

Exercise: Compare Right/Left Associative Parsers

1 (* left_right_assoc.ml: *)
2
3 (* right associativity via standard recursion *)
4 and parsesub_right toks =
5 let (lexpr, rest) = parse_num toks in (* try higher prec first *)
6 match rest with
7 | Minus :: tail -> (* found - *)
8 let (rexpr,rest) = parsesub_right tail in (* recursively gen right side *)
9 (Sub(lexpr,rexpr), rest) (* subtract left / right *)

10 | _ -> (lexpr, rest) (* not a sub *)
11
12 (* left associativity via iteration *)
13 and parsesub_left toks =
14 let (lexpr, rest) = parse_num toks in (* try higher prec first *)
15 let rec iter lexpr toks = (* loop over adjacent exprs *)
16 match toks with
17 | Minus :: rest -> (* found - *)
18 let (rexpr,rest) = parse_num rest in (* try higher prec *)
19 iter (Sub(lexpr,rexpr)) rest (* left Sub, iterate again *)
20 | _ -> (lexpr, toks)
21 in
22 iter lexpr rest (* start iterating *)

6

Answers: Compare Right/Left Associative Parsers

▶ Right-associative recurses deeply to the right to generate right
hand expression

▶ Left-associative iterates consuming subtraction expressions in
a (tail recursive) loop

▶ Left-associative creates a left-heavy tree by combining right
and left expressions in a Sub then passing it forward in the
iteration to become the left branch

7

Token Streams and Buffering

▶ So far have assumed that Lexer
tokenizes the entire input string
prior to starting the parser

▶ This works for small inputs, but
for large files may be inefficient
▶ May need to store entire

input (file) in memory during
lexing

▶ Must store entire token list in
memory during parsing

▶ Real world lexer/parsers make
this more efficient via a lexing
buffer

▶ Lexing buffer stores only part of
file and lexing stream

▶ API to see next() token and
consume() it

▶ Frequently seen in interpreter
and compiler tutorials

// imperative pseudocode for
// parsing add/sub expressions
// uses a lexing buffer
global lexbuf;
function parse_addsub(){

var lexpr := parse_muldiv()
while lexbuf.next() = "+" or "-"

var op := lexbuf.next()
lexbuf.consume()
var rexpr := parse_muldiv()
lexpr := make_tree(op,lexpr,rexpr)

return lexpr
}

8

Lexing and Parsing Tools
▶ Generally do NOT want to write large-scale programs in

assembly language: too many things can go wrong
▶ Generally do NOT want to write lexers/parsers by hand for

large-scale languages: too many things can go wrong
▶ High-level programming languages improve over assembly

through a compiler or interpreter: translate high-level code to
low

▶ Lexer/Parser Generators improve over hand-written parser
generators: translate high-level grammars to low-level code

▶ Lex and Yacc1 are the classic tools to generate lexer/parsers
▶ Usually involves two input files

1. Parser input to Yacc describes token kinds, grammar, actions
2. Lexer input to Lex describes how characters translate to tokens

▶ Result in compilable code with built-in lexing buffer and
efficient grammar recognition through finite automata

1Yacc is short for Yet Another Compiler Compiler as it is often used to
generate the front-end of a compiler

9

OCaml Lex and Yacc
▶ OCaml comes with standard tools for language processing

▶ ocamllex: lexer generator
▶ ocamlcyacc: parser generator

▶ Input has special syntax, not all normal OCaml
▶ Will briefly survey these to get a flavor for them but Lex/Yacc

are worth further study if you are interested in constructing
programming languages

▶ Couch this in discussion a calculator language arith which is
part of the code pack

> cd arith/
> make
...
> ./arithmain
arithmain> 1+1
2
arithmain> 5*9-2
43
arithmain> 10-3-2
5

10

OCaml Lex Input
▶ Simple structure mainly used to set up a rule for token kinds
▶ Has dependency on arithparse.ml for token kinds

1 (* arithlex.mll : OCaml lex source file *)
2
3 (* First section is raw ocaml between curlies *)
4 {
5 open Arithparse;; (* bring in token types from arithparse.mli *)
6 exception Eof;; (* declare exception type for end of file *)
7 }
8
9 (* second section defines how the lexer works *)

10 rule token = parse
11 | [' ' '\t'] { token lexbuf } (* skip recursing *)
12 | ['\n'] { EOL }
13 | ['0'-'9']+ as lxm { INT(int_of_string lxm) } (* regex for numbers *)
14 | '+' { PLUS }
15 | '-' { MINUS }
16 | '*' { TIMES }
17 | '/' { SLASH }
18 | '(' { OPAREN }
19 | ')' { CPAREN }
20 | eof { raise Eof } (* end of file *)

11

OCaml Yacc Input 1

▶ Two main sections, first is shown
▶ Declares token types and main entry into parser

1 /* arithparse.mly: ocaml yacc sourc file defining a parser. Note the
2 C-style comments rather than OCaml style */
3
4 /* first section defines token types used by parser using % directives */
5 %token <int> INT
6 %token PLUS MINUS TIMES SLASH
7 %token OPAREN CPAREN EOL
8
9 %type <int> main /* type returned by production main */

10 %start main /* entry production for parser */
11
12 /* end first section */
13 %%

12

OCaml Yacc Input 2
▶ Second section shows grammar productions
▶ Curlies to the right have actions associated with productions
▶ Dollar variables correspond to results of recursive grammar

elements
14 ...
15 %%
16 /* second section which shows expressions */
17 main: /* initial production */
18 | plusminus EOL { $1 } /* $1 is result of plusminus */
19 ;
20 plusminus: /* addition and subtraction */
21 | muldiv { $1 } /* could be just mul/div */
22 | plusminus PLUS muldiv { $1 + $3 } /* or an addition */
23 | plusminus MINUS muldiv { $1 - $3 } /* or a subtraction */
24 ;
25 muldiv: /* multiplication and division */
26 | ident { $1 } /* could be just an ident */
27 | muldiv TIMES ident { $1 * $3 } /* or a multiplication */
28 | muldiv SLASH ident { $1 / $3 } /* or a division */
29 ;
30 ident: /* identifier */
31 | INT { $1 } /* integer constant */
32 | OPAREN plusminus CPAREN { $2 } /* opening parenthesis */
33 ;

13

A Main Function
1 (* arithmain.ml: main routine for lexing/parsing and interpreting an
2 arithmetic language. This version directly interprets the language
3 rather than building an expression tree. *)
4 open Printf;;
5
6 let _ =
7 try
8 (* Lexing is an OCaml standard module for lexer support. Next line
9 creates a lexing buffer. *)

10 let lexbuf = Lexing.from_channel stdin in
11
12 while true do (* loop over input until end of file *)
13 printf "arithmain> %!"; (* print prompt *)
14
15 (* Arithlex.token is a function that produces a token.
16 Arithparse.main function takes a token producer and a lexbuf.
17 The next line lexes and parses an expression. *)
18 let result = Arithparse.main Arithlex.token lexbuf in
19
20 printf "%d\n%!" result; (* print integer result *)
21
22 done; (* end of input loop *)
23
24 with Arithlex.Eof -> (* eof exception pops out of loop *)
25 printf "That's all folks!\n";
26 ;;

14

Compiling Gets Complicated
▶ Compiling with lex/yacc is tricky as several functions like

Arithparse.main defined based on grammar production rules
▶ Also compile order is tricky, best to put build sequence into a

Makefile or other build system
1 > make
2 ocamllex arithlex.mll # creates arithlex.ml
3 11 states, 267 transitions, table size 1134 bytes
4 ocamlyacc arithparse.mly # creates arithparse.ml / arithparse.mli
5 ocamlc -g -c arithparse.mli # required by arithlex.ml
6 ocamlc -g -c arithlex.ml # required by arithparse.ml
7 ocamlc -g -c arithparse.ml
8 ocamlc -g -c arithmain.ml # requires arithlex.cmo and arithparse.cmo
9 ocamlc -g -o arithmain arithlex.cmo arithparse.cmo arithmain.cmo

10
11 > ./arithmain
12 arithmain> 1+3*2-4
13 3

▶ Note report on line 3: lexing statistics for finite automata
generated which will recognize tokens

▶ arthlex.ml and arithparse.ml: valid OCaml but machine
generated code, not meant for human eyes

15

Generating Parse Trees in Lex/Yacc
▶ arith/ system directly interprets input during parsing

through grammar actions as in
plusminus: /* addition and subtraction */
| muldiv { $1 } /* could be just mul/div */
| plusminus PLUS plusminus { $1 + $3 } /* or an addition */
| plusminus MINUS plusminus { $1 - $3 } /* or a subtraction */

;

▶ This is typical of interpreters perform no further
transformations or optimizations on the code

▶ Code pack include arith-tree/ which changes this to create
a data structure instead via code like

plusminus: /* addition and subtraction */
| muldiv { $1 } /* could be just mul/div */
| plusminus PLUS plusminus { Add($1,$3) } /* or an addition */
| plusminus MINUS plusminus { Sub($1,$3) } /* or a subtraction */

;

▶ Resulting parse tree is captured in a main routine for printing,
transformation, and evaluation

▶ Typical of a compiler or at least more sophisticated
interpreter

16

How do other languages do it?

▶ OCaml and Lisp excel at symbolic computation:
manipulating data like expression trees and token sequences

▶ OCaml makes it easy to declare new types of data that are
algebraic with variants: very well suited for symbolic
processing

▶ Lisp has untyped symbols built in, as easy as quoting as in the
code ’add is a symbol with name “add”

▶ Languages like C, Java, Python are a bit clunkier for symbolic
processing
▶ Symbols aren’t innate in any of them: with string constants,

enumerations, classes can emulate them
▶ Takes more work and more lines of code than OCaml/Lisp

mechanisms
▶ Also, none of these have standard lexer/parser generators

(though many libraries exist for them)

17

Contrast: Symbolic Data in Java vs OCaml

▶ As a sample, today’s code pack contains equivalent versions
of the arithmetic langauge in OCaml and Java

▶ Both of these
▶ Accept the same language like 1+2*3-12/4
▶ Use lexer/parser generators to specify high-level language
▶ Accept user input on command line or interactively
▶ Create an expression tree data structure
▶ Print the data structure to the screen

▶ OCaml version uses ocamllex / ocamlparse,
▶ Build 6 files → 17 files

▶ Java version uses ANTLR4 parser generator library
▶ Build 5 files → 35 files

18

https://www.antlr.org/

Contrast Stats: Symbolic Data in Java vs OCaml
OCaml arith-tree/

File LOC Purpose
arithlex.mll 15 Lexer definition
arithparse.mly 26 Grammar definition

41 Subtotal
arithexpr.ml 33 Tree data type and printing
arithmain.ml 13 Main function for interactive input loop, printing

88 Total Lines of Code

Java arith-java/
File LOC Purpose
TokenType.java 15 Declare token types with string names
Arith.g 34 Grammar file for ANTLR4

49 Subtotal
ArithMain.java 123 Main routine, tree data, interface code, printing

172 Total Lines of Code
▶ Not interactive: just parses command line arg and prints tree as
▶ Most of the code is interface glue matching classes to parse tree types via

Visitor Pattern implementations
▶ Mostly due to Java classes not fitting expression trees as well as algebraic

variants: classes are the only way to represent data in Java

File LOC Purpose
TokenType.java 15 Declare token types with string names
ArithMain.java 192 Main routine, tree data, interface code, printing (comments)
Arith.g 34 Grammar file for ANTLR4

241 Total Lines of Code
arithexpr.ml 36 Tree data type and printing (comments)
arithlex.mll 20 Lexer definition (comments)
arithparse.mly 41 Grammar definition (comments)
arithmain.ml 17 Main function for interactive input loop, printing (comments)

136 Total Lines of Code

19

https://en.wikipedia.org/wiki/Visitor_pattern

Summary

▶ Writing lexers/parsers is hard, riddled with issues like
left/right associativity

▶ Make life easier by employing a lexer/parser generator
▶ OCaml is well-suited for symbolic data processing via data

type mechanisms and built-in data structures
Any sufficiently complicated C or Fortran program con-
tains an ad-hoc, informally-specified, bug-ridden, slow im-
plementation of half of Common Lisp.
– Greenspun’s Tenth Rule

20

https://en.wikipedia.org/wiki/Greenspun%2527s_tenth_rule

