
CMSC330: Parsing and Lexing

Chris Kauffman

Last Updated:
Thu Oct 19 09:23:26 AM EDT 2023

1

Logistics

Assignments
▶ Project 5 is almost up
▶ NFA to DFA conversion in OCaml
▶ P5 due 17-Oct
▶ Exam 1 Grades will be posted Wed

Reading
Chapter 4 “Parsing” from Compilers:
Principles, Techniques, and Tools by Aho et al.
(e.g. the “Dragon Book”)

Goals
▶ Lexing and Parsing input into Trees
▶ Evaluating / Interpreting Trees

ACM named Alfred Vaino Aho and
Jeffrey David Ullman recipients of
the 2020 ACM A.M. Turing Award
for fundamental algorithms and
theory underlying programming
language implementation and for
synthesizing these results and
those of others in their highly
influential books. . .
– Source: 2020 ACM A.M. Turing
Award Laureates

2

https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
https://awards.acm.org/about/2020-turing
https://awards.acm.org/about/2020-turing

Announcements

Exam 1 Grades Posted

▶ Overall good performance for students
▶ Problem 5a / 5b had proved difficult for TAs to assign credit

consistently
▶ If you see something that looks off in your grade for those, do

file a regrade request and Kauffman will handle it

3

An Opening Example

let x = 5 + 10*4 + 7*(3+2) in ...

▶ Above program fragment is something one would type in and
expect compiled/run without trouble

▶ The trouble comes when writing the interpreter or compiler
▶ Will discuss issues associated with these for the next few

sessions
▶ Ultimate goal: code to evaluate arithmetic expressions
▶ Will require

▶ Algebraic Types for symbolic data
▶ Recursive functions for lexing/parsing
▶ List processing for parsing
▶ Recursive functions on trees for evaluation

Good thing that you’ve mastered all these. . .

4

Roadmap for Processing

1. Get input
let input = "5 + 10*4 + 7*(3+2)";;

2. Lex input to tokens
[Int 5; Plus; Int 10; Times; Int 4; Plus;...

3. Parse tokens to expression tree
Add(Const(5),

Add(Mul(Const(10),
Const(4)),...

4. Evaluate tree
80

5

Getting Input

▶ Generally the easy part
▶ Obtained via reading from a file or user typing in input
▶ Can usually assume it’s stored in a string somewhere like

let input = "5 + 10*4 + 7*(3+2)";;
▶ First step in compiler or interpreter is to get input like this

6

Lexing
lexical analysis ≡ lexing ≡ tokenization

▶ Raw input is just a bunch of characters
▶ Lexing is done to ease processing later on
▶ Group characters into tokens / lexemes for operations,

numbers, keywords, etc
▶ Assign some meaning to tokens via a symbolic name
▶ Identify characters that don’t belong/not recognized
▶ Output of lexing is a stream of such tokens, will use a list of

tokens in our work
let input = "5 + 10*4 + 7*(3+2)";; (* Lexing: convert this string..*)
let lexed = [Int 5; Plus; Int 10; (* Into this stream of tokens *)

Times; Int 4; Plus;
Int 7; Times;
OParen; Int 3; Plus;
Int 2; CParen];;

7

Lexing and Token Symbols

▶ Typical tokens are symbolic and may carry additional data
▶ A convenient way to represent them in OCaml is via algebraic

types with variants for each token type
(* algebraic types for tokens: lexing results *)
type token =

Plus | Times | OParen | CParen | Int of int;;
▶ Above tokens are very limited but sufficient for simple

arithmetic
▶ More extensive arithmetic language processing would include

subtraction, division, floating point numbers
▶ Fuller programming languages have variable identifiers,

keywords like let/in and for/do

8

Exercise: Lexing Thought Questions

let input = "5 + 10*4 + 7*(3+2)";; (* Lexing: convert this string..*)
let lexed = [Int 5; Plus; Int 10; (* Into this stream of tokens *)

Times; Int 4; Plus;
Int 7; Times;
OParen; Int 3; Plus;
Int 2; CParen];;

1. Do all characters in the above string appear in the tokens? If
not, which are not present and why?

2. Do all the tokens correspond to single characters or are groups
of multiple characters associated with a single token?

3. Speculate on how the code for a lexing function will look

9

Answers: Lexing Thought Questions
let input = "5 + 10*4 + 7*(3+2)";; (* Lexing: convert this string.. *)
let lexed = [Int 5; Plus; Int 10; (* Into this stream of tokens *)

Times; Int 4; Plus;
Int 7; Times;
OParen; Int 3; Plus;
Int 2; CParen];;

1. Do all characters in the above string appear in the tokens? If
not, which are not present and why?
Spaces do not get tokenized; whitespace is commonly ignored.

2. Do all the tokens correspond to single characters or are groups
of multiple characters associated with a single token?
In the above example, most tokens are single characters but
multi-character numbers like 10 are a single token.

3. Speculate on how the code for a lexing function will look
Lexing functions must scan through the string matching
characters and creating tokens. Our version will combine
recursion and iteration.

10

A Simple Lexing Routine

1 let lex_string string = (* create a list of tokens *)
2 let len = String.length string in
3 let rec lex pos = (* recursive helper on pos in string *)
4 if pos >= len then (* off end of string ? *)
5 [] (* end of input *)
6 else (* more to lex *)
7 match string.[pos] with (* match a single character *)
8 |' ' | '\t' | '\n' -> lex (pos+1) (* skip whitespace *)
9 |'+' -> Plus :: (lex (pos+1)) (* single char ops become operators *)

10 |'*' -> Times :: (lex (pos+1)) (* like add and multiply *)
11 |'(' -> OParen :: (lex (pos+1)) (* and open/close parens *)
12 |')' -> CParen :: (lex (pos+1))
13 | d when is_digit d -> (* see a digit *)
14 let stop = ref pos in (* scan through until a non-digit is found *)
15 while !stop < len && is_digit string.[!stop] do
16 incr stop;
17 done;
18 let numstr = String.sub string pos (!stop - pos) in (* substring is the int *)
19 let num = int_of_string numstr in (* parse the integer *)
20 Int(num) :: (lex !stop) (* and tack onto the stream of tokens *)
21 | _ -> (* any other characters lead to failures *)
22 let msg = sprintf "lex error at char %d, char '%c'" pos string.[pos] in
23 failwith msg
24 in (* end helper *)
25 lex 0 (* call helper *)
26 ;;

11

Sample Calls to lex_string

1 # lex_string "123";;
2 - : token list = [Int 123]
3
4 # lex_string "*";; (* NOT VALID SYNTAX BUT THAT IS *)
5 - : token list = [Times] (* THE BUSINESS OF THE PARSING PHASE *)
6
7 # lex_string "123 +";;
8 - : token list = [Int 123; Plus]
9

10 # lex_string "123 + 19";;
11 - : token list = [Int 123; Plus; Int 19]
12
13 # lex_string "123 + (19)";;
14 - : token list = [Int 123; Plus; OParen; Int 19; CParen]
15
16 # lex_string "123 * (1+19)";;
17 - : token list = [Int 123; Times; OParen; Int 1; Plus; Int 19; CParen]
18
19 # lex_string "/";; (* UNRECOGNIZED CHARACTERS *)
20 Exception: Failure "lex error at char 0, char '/'".
21
22 # lex_string "123 + 19 - 9";;
23 Exception: Failure "lex error at char 9, char '-'".

12

Notes on Lexing

▶ The provided Lexing routine does raw character processing
▶ Might benefit from use of regular expression matching to

make things easier
▶ Often tool chains that automatically create lexer code specify

tokens via regular expressions

13

Context Free Grammars and Parsing

▶ Have seen that CFGs allow formal specification of the order /
syntax of an allowed language

▶ Have seen how to derive terminal strings / parse trees from
CFGs

▶ Parsers solve the inverse problem
▶ Given a terminal string . . .
▶ Determine if it is allowed by the grammar
▶ Construct a parse tree for it
▶ If string cannot be generated by the grammar, reject it with

syntax errors
▶ Like most inverse problems, going backwards (string to

grammar) is more difficult than going forwards (grammar to
string)

14

https://en.wikipedia.org/wiki/Inverse_problem

Parsing Approaches
▶ Parsing approaches are widely studied and have many flavors

▶ Top Down vs Bottom Up
▶ Generate Leftmost derivation vs Rightmost derivation
▶ Deterministic based on finite look-ahead, sometimes not
▶ Recursive descent vs Pushdown Automata vs Parsing Tables

▶ In literature will see acronyms summarizing some aspects of
these
▶ LL(1): Left to right parsing, Leftmost derivation, 1-token

look-ahead
▶ LALR(1): Left to right parsing, Rightmost derivation, 1-token

look-ahead
▶ In most practical scenarios, you shouldn’t write your own

parser: parsing is tricky and automated tools exist to aid with
creation of fast efficient parses

▶ In educational settings, writing it from scratch helps us
learn

▶ Will focus on the traditional Recursive Descent Parser
15

Goal: Build an Abstract Syntax Tree (AST)

▶ langproc.ml builds an abstract syntax tree for arithmetic
with integers, + and *

▶ Abstract syntax tree for these is comprised of the following
1 (* algebraic types for expression tree: parsing results *)
2 type expr =
3 | Add of expr * expr
4 | Mul of expr * expr
5 | Const of int
6 ;;
7
8 let input = "5 + 10*4 + 7*(3+2)";;
9 let parsed =

10 Add(Const(5),
11 Add(Mul(Const(10),
12 Const(4)),
13 Mul(Const(7),
14 Add(Const(3),
15 Const(2)))))
16 ;;

16

CFGs and Recursive Descent Parsers
▶ Recall CFGs have Terminal Symbols, Non-terminal Symbols,

Production Rules, a Start Symbol
▶ A recursive descent parser handles parsing via a series of

functions, possibly recursive
▶ Typically one function per non-terminal symbol
▶ Initial function to call is the start symbol
▶ Functions look for non-terminal symbols in input and attempt

to consume them according to production rules in the
grammar

▶ Recursive Descent has the following properties
▶ Top-Down Parsing: constructs upper parts of Parse Tree /

AST building to lower
▶ Non-deterministic: involves search and backtracking
▶ Look-Ahead: will look forward at 1 or more tokens in input to

decide how to proceed

17

Example CFG Recursive Descent Parsing Structure

ParenMath

A →A + A (1)
A →M (2)

M →M ∗ M (3)
M →N (4)
N →number (5)
N →(A) (6)

Ex: 5 + 10*4 + 7*(3+2)

Recursive Descent Parsers often involve
mutually recursive functions so use
OCaml’s and syntax to define a series
of such functions

Parser for ParenMath
let parse_tokens tokens =

(* A prec2: addition only *)
let rec prec2 toks =

...

(* M prec1: multiplication *)
and prec1 toks =

...

(* N prec0: self-evaluating tokens
like Int and Paren expressions *)

and prec0 toks =
...

in

(* end helpers, main code for
parse_tokens *)

let (expr, rest) = prec2 tokens in
...

;;

18

Exercise: Highest Precedence Grammar Elements
▶ langproc.ml provides a recursive descent parser with 3

precedence levels
▶ Below is highest precedence level

1 (* prec0: self-evaluating tokens like Int and parenthesized expressions *)
2 let rec prec0 toks =
3 match toks with
4 | [] -> (* out of input *)
5 raise (ParseError {msg="expected an expression"; toks=toks})
6 | Int n :: tail -> (* ints are self-evaluating *)
7 (Const(n),tail)
8 | OParen :: tail -> (* parenthesized expresion *)
9 begin

10 let (expr,rest) = prec2 tail in (* start back at lowest precedence *)
11 match rest with
12 | CParen::tail -> (expr,tail)
13 | _ -> raise (ParseError {msg="unclosed parentheses"; toks=rest})
14 end
15 | _ ->
16 raise (ParseError {msg="syntax error"; toks=toks})

1. What kind of thing is parameter toks?
2. What types of tokens are handled by prec0
3. What kind of parsing errors can result at this level?

19

Answers: Highest Precedence Grammar Elements

1. What kind of thing is parameter toks?
It is a list of token types. The head element is analyzed in the
match/with.

2. What types of tokens are handled by prec0
Int tokens which are converted to Const expressions and
OParen/CParen tokens which continue parsing again.

3. What kind of parsing errors can result at this level?
Running out of input, failure to close a parenthesis, and
general syntax errors.

20

Exercise: Arithmetic Operations
1 (* prec1: multiplication *)
2 and prec1 toks =
3 let (lexpr, rest) = prec0 toks in (* try higher prec first *)
4 match rest with
5 | Times :: tail -> (* * is first *)
6 let (rexpr,rest) = prec1 tail in (* recurse to get right-hand expr *)
7 (Mul(lexpr,rexpr), rest) (* multiplyt left/right expr *)
8 | _ -> (lexpr, rest) (* not a multiply *)
9

10 (* prec2: addition only *)
11 and prec2 toks =
12 let (lexpr, rest) = prec1 toks in (* try higher prec first *)
13 match rest with
14 | Plus :: tail -> (* + is first *)
15 let (rexpr,rest) = prec2 tail in (* recurse to get right-hand expr *)
16 (Add(lexpr,rexpr), rest) (* add left/right expr *)
17 | _ -> (lexpr, rest) (* not an addition *)

1. prec1 calls prec0 and prec2 calls prec1. In this scheme,
does a large number indicate high or low precdence?

2. When prec0 is called, what is the result? Is this the same for
when prec1 is called? how about prec2?

3. What happens if prec1 and prec2 cannot match a token at
the beginning of the list of tokens?

21

Answers: Arithmetic Operations

1. prec1 calls prec0 and prec2 calls prec1. In this scheme,
does a large number indicate high or low precdence?
Large numbers indicate lower precedence as prec0 are
self-evaluating or parenthesized experssions. This is the
opposite of the OCaml documentation where higher numbers
indicate higher precedence.

2. When prec0 is called, what is the result? Is this the same for
when prec1 is called? how about prec2?
A pair of an expression (AST) and the remaining list of tokens
is returned in both cases. This is also what prec0 returns.

3. What happens if prec1 and prec2 cannot match a token at
the beginning of the list of tokens?
They return the expression given by the prec0 or prec1 paired
with the entire list of tokens with nothing removed. This
backtracks to a previous function.

22

The Full(-ish) Parser
3 precedence levels, 3 functions to handle them

1 (* parse tokens list of arithmetic
2 language to an AST *)
3 let parse_tokens tokens =
4
5 (* prec0: self-evaluating tokens like
6 Int and parenthesized expressions *)
7 let rec prec0 toks =
8 match toks with
9 | [] ->

10 raise (Expect Expression)
11 | Int n :: tail ->
12 (Const(n),tail)
13 | OParen :: tail ->
14 begin
15 let (expr,rest) = prec2 tail in
16 match rest with
17 | CParen::tail -> (expr,tail)
18 | _ -> raise (Unclosed Paren)
19 end
20 | _ ->
21 raise (Syntax Error)
22
23 (* prec1: multiplication *)
24 and prec1 toks =
25 let (lexpr, rest) = prec0 toks in
26 match rest with

27 | Times :: tail ->
28 let (rexpr,rest) = prec1 tail in
29 (Mul(lexpr,rexpr), rest)
30 | _ -> (lexpr, rest)
31
32 (* prec2: addition only *)
33 and prec2 toks =
34 let (lexpr, rest) = prec1 toks in
35 match rest with
36 | Plus :: tail ->
37 let (rexpr,rest) = prec2 tail in
38 (Add(lexpr,rexpr), rest)
39 | _ -> (lexpr, rest)
40
41 in
42
43 (* end helpers, main code for
44 parse_tokens *)
45 let (expr, rest) = prec2 tokens in
46 match rest with
47 | [] -> expr
48 | _ -> raise (Tokens Remain)
49 ;;

23

Sample Calls to parse_tokens
1 # parse_tokens (lex_string "11+5");; (* Simple tree with Const leaves *)
2 - : expr = Add (Const 11,
3 Const 5)
4
5 # parse_tokens (lex_string "11+5+2+9");; (* Chain-esque tree of repeated Add *)
6 - : expr = Add (Const 11,
7 Add (Const 5,
8 Add (Const 2,
9 Const 9)))

10
11 # parse_tokens (lex_string "11+5*2+9");; (* Mult has higher precedence *)
12 - : expr = Add (Const 11,
13 Add (Mul (Const 5,
14 Const 2),
15 Const 9))
16
17 # parse_tokens (lex_string "2*(11+5)*2");; (* Parens change precedence *)
18 - : expr = Mul (Const 2,
19 Mul (Add (Const 11,
20 Const 5),
21 Const 2))
22
23 # parse_tokens (lex_string "2 +");; (* Parse Error Cases *)
24 Exception: ParseError {msg = "expected an expression"; toks = []}.
25
26 # parse_tokens (lex_string "2 * (3+5 ");;
27 Exception: ParseError {msg = "unclosed parentheses"; toks = []}.
28
29 # parse_tokens (lex_string "2 * 3 + * 5");;
30 Exception: ParseError {msg = "syntax error"; toks = [Times; Int 5]}.

24

Exercise: Show Abstract Syntax
▶ Show the AST or report errors for the following examples
▶ First few examples are already done for reference

parse_tokens (lex_string "11+5+2+9");; (* EXAMPLE A *)
- : expr = Add (Const 11,

Add (Const 5,
Add (Const 2,

Const 9)))

parse_tokens (lex_string "2*(11+5)*2");; (* EXAMPLE B *)
- : expr = Mul (Const 2,

Mul (Add (Const 11,
Const 5),

Const 2))

parse_tokens (lex_string "(11 + 2)*5");; (* PROBLEM 1 *)

parse_tokens (lex_string "(11 +)*5");; (* PROBLEM 2 *)

parse_tokens (lex_string "11*5*2*9");; (* PROBLEM 3 *)

parse_tokens (lex_string "(11+2)+(5+9)");; (* PROBLEM 4 *)

parse_tokens (lex_string "11*5*2+9");; (* PROBLEM 5 *)

25

Answers: Show Parse Tree
1 # parse_tokens (lex_string "(11 + 2)*5");; (* PROBLEM 1 *)
2 - : expr = Mul (Add (Const 11, (* parens give addition higher *)
3 Const 2), (* precedence, later multiply *)
4 Const 5)
5
6 # parse_tokens (lex_string "(11 +)*5");; (* PROBLEM 2 *)
7 Exception: ParseError {msg = "syntax error"; toks = [CParen; Times; Int 5]}.
8
9 # parse_tokens (lex_string "11*5*2*9");; (* PROBLEM 3 *)

10 - : expr = Mul (Const 11, (* chain-like tree of repeated *)
11 Mul (Const 5, (* multiplications *)
12 Mul (Const 2,
13 Const 9)))
14
15 # parse_tokens (lex_string "(11+2)+(5+9)");; (* PROBLEM 4 *)
16 - : expr = Add (Add (Const 11, (* Parens give first/last add *)
17 Const 2), (* higher precedence than middle *)
18 Add (Const 5,
19 Const 9))
20
21 # parse_tokens (lex_string "11*5*2+9");; (* PROBLEM 5 *)
22 - : expr = Add (Mul (Const 11, (* Multiply everything first *)
23 Mul (Const 5, (* then add *)
24 Const 2)),
25 Const 9)

These make for easy exam problems. . .

26

Recursive Descent Parsing is a Search Process

▶ It is difficult but very worthwhile to reason about how the
recursive descent parser works in total

▶ Parsing is really a search process in which each function tries to
consume tokens with some failures allowing backtracking

▶ Gets even trickier to understand with parentheses involved which
circle back to top of parsing functions

| TOKEN POSITION | FUNCTION CALL STACK | EXPRESSON TREE |
|------------------+-------------------------------+--|
5 + 8 * 4		
<5> + 8 * 4	prec2	
<5> + 8 * 4	prec2,prec1	
<5> + 8 * 4	prec2,prec1,prec0	
5 <+> 8 * 4	prec2,prec1	Const(5)
5 <+> 8 * 4	prec2	Const(5)
5 + <8> * 4	prec2,prec2	Add(Const(5),..)
5 + <8> * 4	prec2,prec2,prec1	Add(Const(5),..)
5 + <8> * 4	prec2,prec2,prec1,prec0	Add(Const(5),..)
5 + 8 <*> 4	prec2,prec2,prec1	Add(Const(5),..) Const(8)
5 + 8 * <4>	prec2,prec2,prec1,prec1	Add(Const(5), Mul(Const(8), ...)
5 + 8 * <4>	prec2,prec2,prec1,prec1,prec0	Add(Const(5), Mul(Const(8), ...)
5 + 8 * 4<>	prec2,prec2,prec1,prec1,prec0	Add(Const(5), Mul(Const(8), Const(4)))

27

Aside: Tracing Function Execution
▶ A call trace conveys a

sequence of function calls with
parameter and return values

▶ Useful to understand code flow
within a group of functions,
now the stack looks

▶ Like many programming
environments with a REPL,
OCaml can automatically
generate call traces

▶ #trace funcname;; turns on
tracing of function, shows calls
with params and return values

▶ Look for trace features in every
language either directly or via
debugger tools

let doub x = 2 * x;;
val doub : int -> int = <fun>

let octosum (x,y) =
(doub (doub x)) + (doub (doub y));;

val octosum : int * int -> int = <fun>

#trace octosum;;
octosum is now traced.
#trace doub;;
doub is now traced.

octosum (2,7);;
octosum <-- (2, 7)
double <-- 7
double --> 14
double <-- 14
double --> 28
double <-- 2
double --> 4
double <-- 4
double --> 8
octosum --> 36
- : int = 36

28

Tracing Parsing Functions

1 #use "langproc_trace.ml";; (* defines parsing funcs at top level *)
2 ... (* rather than inside parse_tokens *)
3 val prec2 : token list -> token list * expr = <fun>
4 val prec1 : token list -> token list * expr = <fun>
5 val prec0 : token list -> token list * expr = <fun>
6 ...
7 # #trace prec2;; (* trace each of the parsing funcs *)
8 prec2 is now traced.
9 # #trace prec1;;

10 prec1 is now traced.
11 # #trace prec0;;
12 prec0 is now traced.
13
14 # let parsed = parse_tokens (lex_string "7");;
15 prec2 <-- [Int 7]
16 prec1 <-- [Int 7]
17 prec0 <-- [Int 7]
18 prec0 --> ([], Const 7)
19 prec1 --> ([], Const 7)
20 prec2 --> ([], Const 7)
21 val parsed : expr = Const 7

29

A More Intense Trace Example
▶ Indented (by hand) to show matching of call/return
▶ Token list param/return on the left and expr return on right

1 # parse_tokens (lex_string "7*(3+2)");;
2 prec2 <-- [Int 7; Times; OParen; Int 3; Plus; Int 2; CParen]
3 prec1 <-- [Int 7; Times; OParen; Int 3; Plus; Int 2; CParen]
4 prec0 <-- [Int 7; Times; OParen; Int 3; Plus; Int 2; CParen]
5 prec0 --> ([Times; OParen; Int 3; Plus; Int 2; CParen], Const 7)
6 prec1 <-- [OParen; Int 3; Plus; Int 2; CParen]
7 prec0 <-- [OParen; Int 3; Plus; Int 2; CParen]
8 prec2 <-- [Int 3; Plus; Int 2; CParen]
9 prec1 <-- [Int 3; Plus; Int 2; CParen]

10 prec0 <-- [Int 3; Plus; Int 2; CParen]
11 prec0 --> ([Plus; Int 2; CParen], Const 3)
12 prec1 --> ([Plus; Int 2; CParen], Const 3)
13 prec2 <-- [Int 2; CParen]
14 prec1 <-- [Int 2; CParen]
15 prec0 <-- [Int 2; CParen]
16 prec0 --> ([CParen], Const 2)
17 prec1 --> ([CParen], Const 2)
18 prec2 --> ([CParen], Const 2)
19 prec2 --> ([CParen], Add (Const 3, Const 2))
20 prec0 --> ([], Add (Const 3, Const 2))
21 prec1 --> ([], Add (Const 3, Const 2))
22 prec1 --> ([], Mul (Const 7, Add (Const 3, Const 2)))
23 prec2 --> ([], Mul (Const 7, Add (Const 3, Const 2)))
24 - : expr = Mul (Const 7, Add (Const 3, Const 2))

30

Adding more to the Language

▶ A good exercise would be to grab the langproc.ml file from
the codepack and add obvious stuff to the arithmetic
expression language like subtraction, division, variable IDs

▶ More interesting stuff is programmatic
▶ Name/value binding (including functions)
▶ Control structures like if/then/else
▶ Function application and Lambda Expressions

▶ All have the same flavor
▶ Add a prec_ifthenelse toks function to parse family
▶ Looks for a pattern of tokens that fits

if <expr> then <expr> else <expr>
▶ Creates an associated parse tree associated with these like

Cond(ifexpr, thenexpr, elseexpr)

But first, there’s the small matter of evaluating a parsed
expression in the simple case of arithmetic

31

Exercise: Evaluating an AST

Consider example parse tree below
parse_tokens (lex_string "11*5*2+9");;
- : expr = Add (Mul (Const 11,

Mul (Const 5,
Const 2)),

Const 9)

1. How does one evaluate such arithmetic expressions by hand?
2. What features do you expect from from code that evaluate’s

the expression tree and produces an integer answer?
3. Write a version of evaluate

val evaluate : expr -> int = <fun>

32

Answers: Evaluating an AST
1. How does one evaluate such arithmetic expressions by hand?

Usually ad-hoc but definitely multiply first then add
2. What features would code that would evaluate the

expression tree and produce an integer answer?
It will operate on the Abstract Syntax Tree so will likely be
recursive. The tree is comprised of algebraic types so pattern
matching is expected.

3. Write a version of evaluate
1 (* Evaluate AST of expressions to produce an integer result *)
2 let rec evaluate expr =
3 match expr with
4 | Const i -> i
5 | Add(lexpr,rexpr) ->
6 let lans = evaluate lexpr in
7 let rans = evaluate rexpr in
8 lans + rans
9 | Mul(lexpr,rexpr) ->

10 let lans = evaluate lexpr in
11 let rans = evaluate rexpr in
12 lans * rans
13 ;;
14 # evaluate (parse_tokens (lex_string "11*5*2+9"));;
15 - : int = 119 33

Aside: OCaml’s “Threading” Operator |>

▶ At times have a series of functions to apply to data, tedious
and backwards looking to write

let ans = f3 (f2 (f1 x)) in ...
▶ A reverse application operator is helpful, referred to in some

contexts as a “threading” operator1 as it threads data through
functions in the order they appear

▶ OCaml has threading operator called |>
let ans = x |> f1 |> f2 |> f3 ...

(* full cycle of lex, parse, evaluate *)
let result = evaluate (parse_tokens (lex_string "2*3+5"));;
val result : int = 11

(* with |> threading operator (a.k.a reverse application) *)
let result = "2*3+5" |> lex_string |> parse_tokens |> evaluate;;
val result : int = 11

1This kind of threading has nothing to do with multi-threaded programs; it
merely makes certain kinds of function applications easier on the eyes.

34

Parsing and Evaluation in the General Case
"let x=5 in \

let z=x+2 in \
if x > z then \
then x*z \
else x+z;"

|> lexcalc_string |> parsecalc_tokens;;
Parse tree:
Letin(x)

.var_expr:
IntExp(5)

.in_expr:
Letin(z)

.var_expr:
Add

Varname(x)
IntExp(2)

.in_expr:
Cond

.if_expr:
Greater

Varname(x)
Varname(z)

.then_expr:
Mul

Varname(x)
Varname(z)

.else_expr:
Add

Varname(x)
Varname(z)

▶ Beyond simple arithmetic, language
processing systems add more
programmatic features

▶ Parsing usually puts these in an AST
initially but may convert to other data
structures depending on the goals

▶ Informally, evaluation “does something”
with these elements during a tree walk
such as “executing” the tree, producing
assembly or virtual machine instructions,
drawing something, etc.

▶ Formalisms such as operational
semantics exist which emphasize a
mathematically rigorous description of
what should be done on encountering
each syntactic element of the language

35

