
CMSC330: Context Free Grammars

Chris Kauffman

Last Updated:
Fri Oct 13 04:48:10 PM EDT 2023

1

Logistics

Assignments
▶ No online lecture quiz this week due to Exam 1
▶ Project 4 is up, OCaml basics, due Sun 15-Oct

Reading
Chapter 5 “Context Free Grammars” from Automata Theory,
Languages, and Computation by Hopcroft, Motwani, Pullman

Goals
Context Free Grammars, notation, terminology, usage, limits

2

https://www.amazon.com/Introduction-Automata-Theory-Languages-Computation/dp/0321455363
https://www.amazon.com/Introduction-Automata-Theory-Languages-Computation/dp/0321455363

Limits of Regexs

▶ Recall that Regular Languages (recognized by
Regexs/FSMs) had a limit to their power to recognize/accept

▶ Could not derive a Regex for the following two languages:
1. Equal-ABs = {anbn|n > 0}

Examples of: Equal-ABs = {ab, aabb, aaabbb, aaaabbbb,
...}

2. Balanced-Paren = {(n)n|n > 0}
Examples of Balanced-Paren = {(), (()), ((())), ...}

▶ Clearly the latter has applications in processing programming
languages

▶ Rather than a Regular language, these are examples of
Context Free Languages

3

Context Free Grammars (CFGs)
▶ Terminal Symbols (lowercase letters) comprise the language

alphabet just as in FSMs (includes ϵ “empty string”)
▶ Non-terminal Symbols or Variables (capital letters) which

will be replaced by other symbols
▶ Production Rules: a single Non-terminal on a left-hand side

produces right-hand side combination of
Terminals/Non-terminals

▶ Usual convention is the first Non-terminal with a Production
Rule listed is the Start Symbol

Example: CFG for Equal-ABs

X →aXb

X →ϵ

or

X →aXb|ϵ

▶ Terminals: Only a, b (not
counting empty string ϵ

▶ Non-Terminals: X

▶ Productions: 2, both for X

▶ Start Symbol: X
4

Deriving/Producing Strings from a CFG

Example: CFG for Equal-ABs

X →aXb (1)
X →ϵ (2)

Useful to number each of the
production rules so they can be
easily referenced during
derivations

Derive: aabb

X ⇒1 aXb Use production 1
⇒1 aaXbb Use production 1
⇒2 aabb Use production 2

Derive: Others
▶ aaabbb:

X ⇒1 aXb ⇒1 aaXbb ⇒1
aaaXbbb ⇒2 aaabbb

▶ ab: X ⇒1 aXb ⇒2 ab

Notation: In lecture examples will try to use
▶ → (single arrow) for CFG production rules
▶ ⇒ (double arrow) for derivations

5

A more Interesting CFG

CFG for PlusTimes

A →A + A (1)
A →A ∗ A (2)
A →N (3)
N →DN (4)
N →D (5)
D →0|1|2|3|..|9 (6)

▶ Terminals: +, ∗ and
numbers like 5, 124

▶ Non-Terminals: A, N, D

▶ Productions: 3 for A, 2 for
N , “1” for D, 5 total

Sample Derivation

A ⇒1 A + A

⇒2 A ∗ A + A

⇒3 N ∗ A + A

⇒3 N ∗ N + A

⇒3 N ∗ N + N

⇒4 DN ∗ N + N

⇒5 DD ∗ N + N

⇒4 DD ∗ DN + N

⇒5 DD ∗ DD + N

⇒5 DD ∗ DD + D

⇒6 12 ∗ 34 + 5
The Non-terminal (variable) to which
production rules are applied are underlined 6

(Optional) Exercise: Practice Deriving
▶ Derive a few strings from the PlusTimes CFG
▶ Don’t need to show every step, just get the big ones

CFG for PlusTimes

A →A + A (1)
A →A ∗ A (2)
A →N (3)
N →DN (4)
N →D (5)
D →0|1|2|3|..|9 (6)

Derive: 123

Derive: 9 + 2 ∗ 7

7

Answers: Practice Deriving

CFG for PlusTimes

A →A + A (1)
A →A ∗ A (2)
A →N (3)
N →DN (4)
N →D (5)
D →0|1|2|3|..|9 (6)

Derive: 123
A ⇒3 N ⇒4 DN ⇒4 DDN ⇒5
DDD ⇒6 123

Derive: 9 + 2 ∗ 7
A ⇒1 A+A ⇒2 A+A∗A ⇒4 N +N ∗N ⇒5 D+D∗D ⇒6 9+2∗7

8

CFG Derivations and Parse Trees
Parse Trees are a graphical representation of a string
derived/produced from a CFG, examples below. Can show formally
equivalence of Parse Trees and CFGs via inductive proofs.

9

Leftmost and Rightmost Derivations

▶ Notice choices in earlier derivation
of 12 ∗ 34 + 5: pick a Non-terminal
and apply a production rule

▶ Often want to eliminate choices so
enforce an ordering to derivations

▶ Leftmost / Left-hand derivation
always applies a production to the
leftmost non-terminal

▶ Rightmost / Right-hand
derivation does likewise for
rightmost non-terminal

▶ Note: if there are several possible
productions for leftmost symbol,
leftmost derivation doesn’t specify
which to use. . .

Leftmost Derivation
A ⇒1 A + A

⇒2 A ∗ A + A

⇒3 N ∗ A + A

⇒4 DN ∗ A + A

⇒6 1N ∗ A + A

⇒5 1D ∗ A + A

⇒6 12 ∗ A + A

⇒3 12 ∗ N + A

⇒4 12 ∗ DN + A

⇒6 12 ∗ 3N + A

⇒5 12 ∗ 3D + A

⇒6 12 ∗ 34 + A

⇒4 12 ∗ 34 + N

⇒5 12 ∗ 34 + D

⇒6 12 ∗ 34 + 5
10

Exercise: Ambiguity in CFGs
This grammar has another choice: when deriving 12 ∗ 34 + 5,
which order to apply
▶ (1) A → A + A then (2) A → A ∗ A OR
▶ (2) A → A ∗ A then (1) A → A + A

What is the difference shown in the two Parse Trees?

11

Answers: Ambiguity in CFGs

▶ (12 ∗ 34) + 5 for (1) then (2)
▶ 12 ∗ (34 + 5) for (2) then (1)

Low-precedence operator is higher in the tree, typically want
higher-precedence for ∗ over +, resolve this momentarily via an
adjustment to the grammar 12

Exercise: Proving a Grammar is Ambiguous
To prove a Grammar is ambiguous
▶ Using only leftmost derivations. . .
▶ Derive the same string via two different choices of productions
▶ Creates two different parse trees for the same string

Show the below grammar is ambiguous by finding two left-most
derivations for the same string

X → aX (1)
X → Xb (2)
X → Y (3)
Y → b (4)
Y → ϵ (5)

13

Answers: Proving a Grammar is Ambiguous
To prove a Grammar is ambiguous
▶ Using only Leftmost derivations. . .
▶ Derive the same string via two different choices of productions
▶ Creates two different parse trees for the same string

Show the below grammar is ambiguous by finding two left-most
derivations for the same string

X → aX (1)
X → Xb (2)
X → Y (3)
Y → b (4)
Y → ϵ (5)

ab has several different leftmost
derivations; two are
X ⇒1 aX ⇒2 aXb ⇒3 aY b ⇒5 ab
AND
X ⇒1 aX ⇒3 aY ⇒4 ab
Drawing Parse Trees for these is good
practice

14

Resolving Ambiguities in CFGs

“In an ideal world, we would be able to
give you an algorithm to remove
ambiguity from CFG’s, much as we
were able to show an algorithm in
Section 4.4 to remove unnecessary
states of a finite automaton. However,
the surprising fact is. . . that there is no
algorithm whatsoever that can even tell
us whether a CFG is ambiguous in the
first place.
Fortunately, the situation in practice is
not so grim. For the sorts of constructs
that appear in common programming
languages, there are well-known
techniques for eliminating ambiguity.“
–Automata Theory, Languages, and
Computation by Hopcroft, Motwani, &
Ullman

CFG PlusTimes

A →A + A (1)
A →A ∗ A (2)
A →N (3)
N →DN (4)
N →D (5)
D →0|1|2|3|..|9 (6)

▶ Ambiguity comes here from
the choice of whether to
apply Proudction Rules (1)
or (2) when both are options

▶ Adjust the CFG to remove
this choice to eliminate the
ambiguity 15

Example: Resolving Ambiguity in PlusTimes CFG
▶ Introduce a new non-terminal associated with multiplication
▶ No longer any choices on how to derive sub-expressions

involving *
PlusTimes (Ambiguous)

A →A + A (1)
A →A ∗ A (2)
A →N (3)
N →DN (4)
N →D (5)
D →0|1|2|3|..|9 (6)

PlusTimesUA (Unambiguous)

A →A + A (1)
A →M (2)

M →M ∗ M (3)
M →N (4)
N →DN (5)
N →D (6)
D →0|1|2|3|..|9 (7)

Deriving 12 ∗ 34 + 5 with PlusTimesUA
A ⇒1 A + A ⇒2 M + A ⇒3 M ∗ M + A ⇒4567
12 ∗ M + A ⇒4567 12 ∗ 34 + A ⇒2 12 ∗ 34 + M ⇒467 12 ∗ 34 + 5

16

Operator Precedence and CFGs
▶ When creating CFGs to parse programming languages, often

associate production rules for different levels of operator
precedence

▶ Precedence is the human notion of what to do first
▶ Encoding this in the CFG ensures Parse Trees will have

high-precedence ops low down in the tree: eval these first and
use results in lower-precedence expressions

CFG UnaryMath

A →A + A|A − A|M (1)
M →M ∗ M |M/M |T (2)
T →N |U (3)
U → − N (4)
N →number (5)

5+12/−3−7 ≡ (5+(12/(−3))−7)
▶ Using CFG on left to parse
▶ Parentheses indicate “natural

order” as well as depth in parse
tree

▶ Unary negation has highest
precedence

17

Exercise: A CFG with Cycles

CFG ParApp

A →(B) (1)
A →id|number (2)
B →A (3)
B →BA (4)

▶ id: a valid identifies like x,
+, foo, *

▶ number: a valid number like
123, 0.451, etc

What’s interesting about this
CFG as compared to those we’ve
seen earlier?

Strings
; A
hello
; B
(doit)
; C
(+ 1 2 3)
; D
(define (double x) (* x 2))
; E
((lambda (y z) (if (< y z) y z))) 42 24)
; F
(let ((a 7) (b 9)) (+ a (* 10 b)))

Which of these can be derived
from ParApp?

18

Answers: A CFG with Cycles

CFG ParApp

A →(B) (1)
A →id|number (2)
B →BA (3)
B →A (4)

What’s interesting about this
CFG?
▶ It has a loop or cycle of

sorts: A→ B → A→ B. . .
▶ Such cycles often arise in

Programming Language
CFGs as nesting of
expressions within other
expressions is common

Strings
; A
hello
; B
(doit)
; C
(+ 1 2 3)
; D
(define (double x) (* x 2))
; E
((lambda (y z) (if (< y z) y z))) 42 24)
; F
(let ((a 7) (b 9)) (+ a (* 10 b)))

Which of these can be derived
from ParApp?
▶ All of them: these are all

valid Lisp/Scheme/Racket
▶ Note the simplicity of the

CFG and lack of ambiguity
All it costs you are parens. . .

19

Parse Trees vs Abstract Syntax Trees (ASTs)
There are technical distinctions in some circles between these two:

1. Parse Trees: show all characters and how they would derive
from a CFG

2. Abstract Syntax Tree (AST): eliminate some raw
characters, retains data important to evaluate the semantic
meaning

Durng language processing, may never deal directly with raw Parse
Tree with “parsing” producing a tree more like an AST

CFG PlusTimesUAS

A →A + A (1)
A →M (2)

M →M ∗ M (3)
M →number (4)

Example: 10 + 6 ∗ 91
20

Beyond CFGs: The Chomsky Hierarchy
▶ Noam Chomsky invented Context Free

Grammars during his study of Natural
Languages

▶ CFGs can model some parts of Natural
Languages but not all

▶ Chomsky identified a hierarchy of
grammar types and related them to
computational power in his work Source: Wikipedia

21

https://en.wikipedia.org/wiki/Chomsky_hierarchy

Next: Lexing / Parsing and Evaluation

▶ Will answer the question of how to determine if a string of
terminals (characters) is recognized/accepted by a CFG or
not: Parsing

▶ If the string recognized, the most frequent thing to do with
programming language strings is Evaluate them

22

