
CMSC330: Data Types in OCaml

Chris Kauffman

Last Updated:
Tue Oct 10 09:29:45 AM EDT 2023

1

Logistics

Assignments
▶ No online lecture quiz this week due to Exam 1
▶ Project 4 is up, OCaml basics, due Sun 15-Oct

Reading
Tutorial: OCaml Language Overview
▶ Defining new types and matching them

Goals
▶ HOF Examples in OCaml
▶ Records
▶ Algebraic / Variant Types
▶ (Maybe) Start CFGs

2

https://ocaml.org/docs/data-types

Overview of Aggregate Data Structures / Types in OCaml
▶ Despite being an older functional language, OCaml has a wealth of

aggregate data types
▶ The table below describes some of these with some characteristics
▶ We have discussed Tuples, Lists, alluded to Arrays
▶ Will briefly cover

Elements Typical Access Mutable Example
Lists Homoegenous Index/PatMatch No [1;2;3]
Array Homoegenous Index Yes [|1;2;3|]
Tuples Heterogeneous PatMatch No (1,"two",3.0)
Records Heterogeneous Field/PatMatch No/Yes {name="Sam"; age=21}
Variant Not Applicable PatMatch No type letter = A | B | C;

Note: data types can be nested and combined in any way
▶ Array of Lists, List of Tuples
▶ Record with list and tuple fields
▶ Tuple of list and Record
▶ Variant with List and Record or Array and Tuple

3

Records
▶ Hetergeneous with named fields, Like C struct / Java object
▶ Introduced via the type keyword, each field is given a type
▶ Constructed with {..}, assign each field

type hobbit = {name : string; age : int};; (* two fields *)
type hobbit = { name : string; age : int; }

let bilbo = {name="Bilbo Baggins"; age=111};;
val bilbo : hobbit = {name = "Bilbo Baggins"; age = 111}

let sam = {name="Samwise Gamgee"; age=21};;
val sam : hobbit = {name = "Samwise Gamgee"; age = 21}

type ring = { (* three fields *)
number : int;
power : float;
owner : string;

};;
type ring = { number : int; power : float; owner : string; }

let nenya = {number=3; power=5000.2; owner="Galadriel"};;
val nenya : ring = {number = 3; power = 5000.2; owner = "Galadriel"}

let one = {number=1; power=9105.6; owner="Sauron"};;
val one : ring = {number = 1; power = 9105.6; owner = "Sauron"}

4

Basic Record Use
▶ Dot notation is used to

access record field values
sam.age;;
- : int = 21
sam.name;;
- : string = "Samwise Gamgee"
nenya.power;;
- : float = 5000.2

▶ Records and their fields are
immutable by default

sam.age <- 100;;
Characters 0-14:

sam.age <- 100;;
^^^^^^^^^^^^^^

Error: The record field age is
not mutable
sam.age = 100;;
- : bool = false
sam;;
- : hobbit =
{name = "Samwise Gamgee"; age = 21}

▶ Create new records using with
syntax to replace field values
let old_sam = {sam with age=100};;
val old_sam : hobbit =
{name = "Samwise Gamgee"; age = 100}
let lost_one = {one with

owner="Bilbo";
power=1575.1};;

val lost_one : ring =
{number = 1; power = 1575.1;
owner = "Bilbo"}

▶ Fields declared mutable are
changeable using <- operator
type mut_hob = {

mutable name : string; (*changable*)
age : int (*not*)

};;
let h = {name="Smeagol"; age=25};;
val h: mut_hob = {name="Smeagol";

age=25}
h.name <- "Gollum";; (* assignment *)
- : unit = ()
h;;
- : mut_hob = {name="Gollum"; age=25} 5

(Optional) Exercise: Define two Record Functions
let hobs = [{m_name="Frodo"; age=23}; (* list of hobbits *)

{m_name="Merry"; age=22};
{m_name="Pippin"; age=25};];;

val hobbit_bdays : mut_hob list -> mut_hob list = <fun>
(* DEFINE: creates a new list of mut_hob with all ages incremented by 1 *)

let older_hobs = hobbit_bdays hobs;;
val older_hobs : mut_hob list =
[{m_name = "Frodo"; age = 24}; (* new list; ages updated *)
{m_name = "Merry"; age = 23}; (* distinct from old list *)
{m_name = "Pippin"; age = 26}]

val hobbit_fellowship : mut_hob list -> unit = <fun>
(* DEFINE: name of each hobbit has the string "Fellow" prepended to it so

that "Frodo" becomes "Fellow Frodo" *)

hobbit_fellowship hobs;; (* changes original list of hobs *)
- : unit = ()

hobs;; (* show changed names *)
- : mut_hob list =
[{m_name = "Fellow Frodo"; age = 23};
{m_name = "Fellow Merry"; age = 22};
{m_name = "Fellow Pippin"; age = 25}]

6

Answers: Define two Record Functions
1 (* DEFINE: creates a new list of mut_hob with all ages incremented by 1 *)
2 let rec hobbit_bdays (list : mut_hob list) =
3 match list with
4 | [] -> []
5 | hob :: tail ->
6 {hob with age=hob.age+1} :: (hobbit_bdays tail)
7 ;;
8
9 (* DEFINE: name of each hobbit has the string "Fellow" prepended to it so

10 that "Frodo" becomes "Fellow Frodo" *)
11 let rec hobbit_fellowship (list : mut_hob list) =
12 match list with
13 | [] -> ()
14 | hob :: tail ->
15 hob.m_name <- "Fellow "^hob.m_name;
16 hobbit_fellowship tail;
17 ;;

hobbit_bdays hobbit_fellowship
Uses with : new records uses <- : old records, new field values
Uses cons operator: new list Does NOT use cons, same list
NOT tail recursive IS tail recursive

7

Refs are Just Mutable Records

▶ Have seen that OCaml’s ref allows for mutable data
▶ These are built from Records with a single mutable field
▶ Examine myref.ml which constructs the equivalent of

standard refs in a few lines of code
type 'a myref = {mutable contents : 'a};;

▶ Notable: a polymorphic record
▶ Field contents can be any type
▶ int ref or string list ref etc.

▶ File includes make_ref, deref, assign functions which are
ref x, !x, x := y

▶ Shows how to bind symbols like := to functions though not
how to determine if they are infix/prefix

8

Algebraic / Variant Data Types
Observer the following type construct:
type fruit = (* create a new type *)

Apple | Orange | Grapes of int;; (* 3 value kinds possible *)

let a = Apple;; (* bind a to Apple *)
let g = Grapes(7);; (* bind g to Grapes *)

let count_fruit f = (* function of fruit *)
match f with (* pattern match f *)
| Apple -> 1 (* case of Apple *)
| Orange -> 1 (* case of Orange *)
| Grapes(n) -> n (* case of Grapes *)

;;

▶ As with records, type introduces a new type
▶ fruit is an Algebraic or Variant type
▶ Has exactly 3 kinds of values

▶ Apple and Orange which have no additional data
▶ Grapes which has an additional int of data

▶ Closest C/Java equivalent: enumerations (i.e. enum)
▶ OCaml’s take on this is different and more powerful

9

Algebraic Types Allow Mixtures
▶ An algebraic type is just one type however its variants may

have different kinds of data associated with them
▶ Allows mixed list/array as data is housed in a unified type

1 (* Establish a type that is either an int or string *)
2 type age_name =
3 | Age of int (* Age constructor takes an int *)
4 | Name of string (* Name constructor takes a string *)
5 ;;
6
7 (* Construction of individual age_name values *)
8 let i = Age 21;; (* construct an Age with data 21 *)
9 let s = Name "Sam";; (* construct a Name with data "Sam" *)

10 let j = Age 15;;
11
12 (* age_name list to demonstrate how they are the same type and can
13 therefore be in a list together. *)
14 let mixed_list = [
15 Age 1;
16 Name "Two";
17 Age 3;
18 Name "Four";
19];;

10

Pattern Matching and Algebraic Types
▶ Pattern matching is used extensively with algebraic types
▶ The below function pattern matches on a age_name list
▶ Note use of list AND variant destructuring

1 (* Establish a type that is either an int or string *)
2 type age_name =
3 | Age of int (* Age constructor takes an int *)
4 | Name of string (* Name constructor takes a string *)
5 ;;
6 (* Sum all the Age data in the given age_name list *)
7 let rec sum_ages list =
8 match list with
9 | [] -> 0 (* base case *)

10 | (Age i)::tail -> (* have an age with data i *)
11 i + (sum_ages tail) (* add i onto recursive call *)
12 | _ :: tail -> (* must be a Name *)
13 sum_ages tail (* don't add anything *)
14 ;;

sum_ages;;
- : age_name list -> int = <fun>
sum_ages [Age 1; Name "Two"; Age 3; Name "Four"; Age 5];;
- : int = 9

11

Exercise: Sum Lengths of age_name
Define the following function
let rec sum_lengths list = <fun>
(* Sum the "lengths" of Ages and Names. Length of an Age is 1; Length

of a Name is the `String.length s` of the associated data. *)

sum_lengths [];;
- : int = 0
sum_lengths [Age 4];;
- : int = 1
sum_lengths [Name "bugger"];;
- : int = 6
sum_lengths [Age 4; Name "bugger"];;
- : int = 7
sum_lengths [Age 4; Name "bugger"; Age 2];;
- : int = 8
sum_lengths [Age 4; Name "bugger"; Age 2; Name "bug"];;
- : int = 11

▶ In match/with destructure both list and data variants Age
and Name to deal with them separately

▶ Age a elements contribute 1
▶ Name n elements contribute String.length n
▶ BONUS: Provide a higher-order function definition

12

Answers: Sum Lengths of age_name

let rec sum_lengths list =
match list with
| [] -> 0
| (Age _)::tail -> (* don't need data for age *)

1 + (sum_lengths tail) (* add 1 onto total *)
| (Name n) :: tail -> (* do need data for name *)

(String.length n) + (sum_lengths tail) (* add on length of name *)
;;

(* Higher-order-function Version via List.fold_left *)
let rec sum_lengths_hof list =

let addlen tot item =
match item with
| (Age _) -> tot+1
| (Name n) -> tot+(String.length n)

in
List.fold_left addlen 0 list

;;

13

An much-loved Algebraic Type: ’a option
▶ OCaml has a built-in type

called option which is
defined roughly as

type 'a option = None | Some of 'a;;

▶ Type is polymorphic
let iopt = Some 5;;
val iopt : int option = ...
let bopt = Some false;;
val bopt : bool option = ...
let stropt_list = [

None;
Some "dude";
Some "sweet"

];;
val stropt_list :

string option list = ...

▶ option used to indicate
presence or absence of
something, often in function
return values

▶ Compare assoc and
assoc_opt operations on
association lists
(* An association list *)
let alist = [("a",5);

("b",10)];;
val alist :
(string * int) list = ...

(* assoc: return element or
raise exception *)

List.assoc "b" alist;;
- : int = 10
List.assoc "z" alist;;
Exception: Not_found.

(* assoc_opt: return Some or
None to indicate failure *)

List.assoc_opt "a" alist;;
- : int option = Some 5
List.assoc_opt "z" alist;;
- : int option = None

14

Exercise: Implement assoc_opt

Below is code for assoc. Alter it to fulfill the requirements of
assoc_opt

1 (* Return the value associated with query key in association
2 list alist. Raises a Not_found exception if there is no
3 association *)
4 let rec assoc query alist =
5 match alist with
6 | [] -> raise Not_found (* not found *)
7 | (k,v)::tail when query=k -> v (* found *)
8 | _::tail -> assoc query tail (* recurse deeper *)
9 ;;

10
11 (* Find association of query key in given association
12 list. Return (Some value) if found or None if not found. *)
13 let rec assoc_opt query alist =

15

Answers: Implement assoc_opt

1 (* Return the value associated with query key in association
2 list alist. Raises a Not_found exception if there is no
3 association *)
4 let rec assoc query alist =
5 match alist with
6 | [] -> raise Not_found (* not found *)
7 | (k,v)::tail when query=k -> v (* found *)
8 | _::tail -> assoc query tail (* recurse deeper *)
9 ;;

10
11 (* Find association of query key in given association
12 list. Return (Some value) if found or None if not found. *)
13 let rec assoc_opt query alist =
14 match alist with
15 | [] -> None (* not found *)
16 | (k,v)::tail when query=k -> Some v (* found *)
17 | _::tail -> assoc_opt query tail (* recurse deeper *)
18 ;;

▶ Change empty list case to None rather than exception
▶ Change found case to Some v

16

(Optional) Exercise: Counting Some
▶ Implement the following two functions on option lists
▶ Both solution have very similar recursive structure

count_some : 'a option list -> int = <fun>
(* Count how many times a (Some _) appears in the 'a option list *)

sum_some_ints : int option list -> int = <fun>
(* Sum i's in all (Some i) that appear in the int option list *)

count_some [];;
- : int = 0
count_some [None; None];;
- : int = 0
count_some [Some 5];;
- : int = 1
count_some [Some "a"; None; Some "b"; None; None; Some "c"];;
- : int = 3

sum_some_ints [];;
- : int = 0
sum_some_ints [None; None];;
- : int = 0
sum_some_ints [Some 2];;
- : int = 2
sum_some_ints [Some 2; None; Some 4; Some 9; Some 3; None];;
- : int = 18

17

Answers: Counting Some

1 (* Count how many times a (Some _) appears in a list of options *)
2 let rec count_some opt_list =
3 match opt_list with
4 | [] -> 0
5 | None::tail -> count_some tail
6 | (Some _)::tail -> 1 + (count_some tail)
7 ;;
8
9

10 (* Sum all (Some i) options that appear in the list *)
11 let rec sum_some_ints opt_list =
12 match opt_list with
13 | [] -> 0
14 | None::tail -> sum_some_ints tail
15 | (Some i)::tail -> i + (sum_some_ints tail)
16 ;;

18

Options vs Exceptions

▶ Consider code in opt_v_exc.ml which underscores the
differences in style between assoc and assoc_opt

▶ Exception version crashes when something is not found
▶ Many built-in operators functions have these two alternatives

1. Return an option: found as Some v, not found as None
2. Return found value directly or raise a Not_found exception

▶ Will contrast these more later when discussing exception
handling

19

Lists are Algebraic Types
▶ OCaml’s built-in list type is based on Algebraic types
▶ The file alg_lists.ml demonstrates how one can re-create

standard lists with algebraic types (but don’t do that)
▶ Note the use of type parameter in ’a mylist: can hold any

type of data so it is a polymorphic data type
▶ Note also the type is recursive referencing itself in Cons

1 type 'a mylist = (* type parameter *)
2 | Empty (* end of the list *)
3 | Cons of ('a * 'a mylist) (* an element with more list *)
4 ;;
5
6 (* construct a string list *)
7 let list1 = Cons ("a", Cons("b", Cons("c", Empty)));;
8
9 (* construct a boolean list *)

10 let list2 = Cons (true, Cons(false, Cons(true, Cons(true, Empty))));;
11
12 (* function that calculates the length of a mylist *)
13 let rec length_ml list =
14 match list with
15 | Empty -> 0
16 | Cons (_,tail) -> 1 + (length_ml tail)
17 ;;

20

Uses for Algebraic Types: Tree Structures

▶ In the future we will use Algebraic Types in several major ways
▶ Will study functional data structures, rely heavily on trees
▶ Algebraic types give nice null-free trees

type strtree =
| Bottom (* no more tree *)
| Node of string * strtree * strtree (* data with left/right tree *)

;;
let empty = Bottom;;
let single = Node ("alone",Bottom,Bottom);;
let small = Node ("Mario",

Node("Bowser",
Bottom,
Node("Luigi",

Bottom,
Bottom)),

Node("Princess",
Bottom,
Bottom));;

21

Anonymous Records in Algebraic Types
▶ Algebraic types often use tuple data like in Tree example
▶ This can be hard to read as parts of Nodes aren’t named
▶ Anonymous records allow for field naming: improves

readability
1 type fieldtree =
2 | Bot (* no fields *)
3 | Nod of {data : string; (* anonymous record with data *)
4 left : fieldtree; (* left and *)
5 right : fieldtree} (* right fields *)
6 ;;
7 let field_small = (* small tree w/ named left/right *)
8 Nod {data="Mario";
9 left= Nod{data ="Bowser";

10 left =Bot;
11 right=Nod{data="Luigi"; left=Bot; right=Bot}};
12 right=Nod{data="Princess"; left=Bot; right=Bot}}
13 ;;
14 let rec count_nodes_f ftree =
15 match ftree with
16 | Bot -> 0
17 | Nod n ->
18 let lcount = count_nodes_f n.left in
19 let rcount = count_nodes_f n.right in
20 1 + lcount + rcount
21 ;; 22

Uses for Algebraic Types: Lexer/Parser Results

▶ In the future we will use Algebraic Types in several major ways
▶ Will study converting a text stream to an executable program
▶ Usually done in 2 phases: lexing and parsing
▶ Both usually employ algebraic types

let input = "5 + 9*4 + 7*(3+1)";; (* Lexing: convert this string.. *)
let lexed = [Int 5; Plus; Int 9; (* Into this stream of tokens *)

Times; Int 4; Plus;
Int 7; Times;
OParen; Int 3; Plus;
Int 1; CParen];;

let parsed = (* Parsing: convert lexed tokens.. *)
Add(Const(5), (* Into a semantic data structure, *)

Add(Mul(Const(9), (* in this case a tree reflecting the *)
Const(4)), (* order in which expressions should *)

Mul(Const(7), (* be evaluated. Intrepretation involves *)
Add(Const(3), (* walking the tree to compute a *)

Const(1))))) (* result. Compilation converts the tree *)
;; (* into a linear set of instructions. *)

23

Extra: Multiple Type Params

▶ Records and Algebraic types can take type parameters as in
type 'a option = None | Some of 'a;;

▶ Shows up less frequently but can use multiple type parameters
type ('a, 'b) thisthat = This of 'a | That of 'b;;

▶ File thisthat.ml explores this a little but is not required
reading

▶ Multiple type params appear in OCaml’s library for some data
structures like its polymorphic Hashtables

24

https://v2.ocaml.org/api/Hashtbl.html

