CMSC330: Higher-Order Functions in OCaml

Chris Kauffman

Last Updated:
Tue Oct 3 09:27:48 AM EDT 2023

Logistics

Assignments

» Project 3 Due Fri 06-Oct: Regex — NFA — DFA

> Exam 1 on Thu 05-Oct, covers topics through OCaml
Pattern Matching

Reading: OCaml Docs https://ocaml.org/docs
» OCaml Docs: Lists
» OCaml Docs: Arrays

Demos map / filter / iter / fold on data structures

Goals
» Pattern Matching and Linked Lists
» Higher-Order Functions in OCaml

https://ocaml.org/docs
https://ocaml.org/docs/lists
https://ocaml.org/docs/arrays

Announcements

None

fun with Lambda Expressions

o
B O © N U WN R

=
w N

» Rather than lambda, OCaml provides anonymous functions

via fun syntax

» Unlike in Python, fun has full syntax support for anything
that appears in normal functions

» Note the equivalence below let func a = ... is short-hand

for use of let func =

let addl_stand x = (*
let xpl = x+1 in (€
xpl (*
let addl_lambda = (*
(fun x -> (*
let xpl = x+1 in (€

xpl) (*

bR

let eight = addi_stand 7;; (x
let ate = addl_lambda 7;; (*

fun a —>

standard function syntax: addl_normal is *)
parameterized on x and remains unevaluated *)
until x is given a concrete value *)

bind the name addl_lambda to ... *)

a function of 1 parameter named x. *)

Above standard syntax is "syntatic sugar" *)
for the "fun" version. *)

both versions of the function *)
behave identically *)

Common fun Use: Args to Higher-Order Functions

» Many higher-order functions require short, one-off function
arguments for which fun can be useful

1 let evens list = (* even numbers *)
2 filter (fun n -> n mod 2 = 0) list
3 3
4 let shorter lim list = (* strings shortenr than lim *)
5 filter (fun s -> (String.length s) < lim) list
6
7 let betwixt min max list = (* elements between min/max *)
8 filter (fun e -> min < e &% e < max) list
9 i
» If predicates are more than a couple lines, favor a named
helper function with nicely formatted source code: readability
let is_some list = (* options that have some *)
let pred opt = (* named predicate with *)
match opt with (* formatted source code *)
| Some a -> true (* that is boring but easy *)
| None -> false (* on the eyes *)
in

filter pred list
let is_some list = (* magnificent one-liner versiom... *)
filter (fun opt -> match opt with Some a->true | None->false) list
HH (*x ...that will make you cry on later reading *)

First Class Functions Mean fun Everywhere

>

v

aos W N e

fun most often associated with args to higher-order functions

like filter BUT. ..

A fun / lambda expression can be used anywhere a value is

expected including but not limited to:
» Top-level let bindings
» Local let/in bindings
» Elements of a arrays, lists, tuples
» Values referred to by refs
» Fields of records

lambda_expr.ml demonstrates many of these

Poke around in this file for a few minutes to see things like. ..

(* Demo function refs *)

let func_ref = ref (fun s -> s™" ""s);; (%
let bambam = !func_ref "bam";; (*
func_ref := (fun s -> "!!11");; Cx
let exclaim = !func_ref "bam";; (*

a ref to a function %)

call the ref'd function *)
assign to new function *)
call the newly ref'd func *)

Families of Higher-Order Functions

» Recall the 4 major higher-order functions? (shown below)
» OCaml provides LOTS of instances of these for its library of Data

Structures (DS)

Pattern Description

Library Functions

Filter Select some elements from a DS
(’a -> bool) -> ’a DS -> ’a DS

Iterate Perform side-effects on each element of a DS
(’a -> unit) -> ’a DS -> unit

Map Create a new DS with different elements, same size
(’a -> ’b) -> ’a DS -> ’b DS

Fold/Reduce ~ Compute single value based on all DS elements
(’a -> ’b -> ’a) -> ’a -> ’b DS -> ’a

List.filter, Array.filter
Map.filter, Hashtbl.filter

List.iter, Array.iter
Queue.iter, Map.iter

List.map, Array.map
Map .map

List.fold_left / fold_right
Array.fold_left / fold_right
Queue.fold, Map.fold
Hashtbl.fold

?In some Object-Oriented programming circles, the visitor pattern affects the
same idea as these higher-order functions: visit elements of a data structure and do
something with them. FP makes this generally simpler and more flexible.

https://en.wikipedia.org/wiki/Visitor_pattern

Exercise: iter visits all elements

>

>

v

v

o
= O O 00 N OO W N

e
g W N

\ 4

Frequently wish to visit each element of a data structure to do

something for side-effects, e.g. printing

Sometimes referred to as the visitor pattern

List.iter is a higher-order function for iterating on lists
val List.iter : ('a -> unit) -> 'a list -> unit

Sample uses: What happens in each case?

let ilist = [9; 5; 2; 6; 5; 1;]1;;

let silist = [("a",2); ("b",9); ("d",7)1;;

let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;

(* Print all elems of an int list *)
List.iter (fun i->printf "%d\n" i) ilist;;

(x Print all string,int pairs x)
List.iter (fun (s,i)->printf "str: %s int: %d\n" s i) silist;;

(* Double the float referred to by each element *)
List.iter (fun r-> r := !r *. 2.0) ref_list;;

(* Print all floats referred to *)
List.iter (fun r-> printf "%f\n" !r) ref_list;;

What would code for iter look like like? Tail Recursive?

Answers: lterate via iter

let ilist = [9; 5; 2; 6; 5; 1;1;; (* Sample definition for iter:*)
List.iter (fun i->printf "%d\n" i) ilist;; (* tail recursive *)
let rec iter func list =
match list with
I 0 -> 0
| h::t -> func hd;
iter func t

© 0N TS W N R
= 0o N OO

- : unit = ()

o
[N

let silist = [("a",2); ("b",9); ("a",7)];;

List.iter (fun (s,i)->printf "str: %s int: %d\n" s i) silist;;
str: a int: 2

str: b int: 9

str: d int: 7

16 - : unit = ()

2R e e
T W N

18 # let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;
19 # List.iter (fun r-> r := !r *. 2.0) ref_list;;
: unit = () (* refs are doubled *)

N
=}
I

22 # List.iter (fun r-> printf "%f\n" !r) ref_list;;
- : unit = ()
3.000000

25 7.200000
4.800000

27 14.200000

map Creates a Transformed Data Structures

v

0 N OO W N

Frequently want a new, different data structure, each element
based on elements of an existing data structure
Transforms >a DS to a b DS with same size

» Not mapping keys to values, different kind of map
List.map is a higher-order function that transforms lists to
other lists via an element transformation function

val List.map : ('a -> 'b) -> 'a list -> 'b list
Example uses of List.map

let ilist = [9; 5; 2; 6; 5;

1]
val ilist : int list = [9; 5; 2;

6; 5; 1]

let doubled_list = List.map (fun n-> 2*n) ilist;;
val doubled_list : int list = [18; 10; 4; 12; 10; 2]

let as_strings_list = List.map string_of_int ilist;;
val as_strings_list : string list = ["9"; "5B"; "2"; "6"; "5"; "1"]

10

Exercise: Evaluate map Calls

© 0N OO WN

T =
N O U W N O

18

» Code below makes use of List.map to transform a list to a
different list

» Each uses a parameter function to transform single elements

» Determine the value and type of the resulting list in each case
let silist = [("a",2); ("b",9); ("d",7)]1;;
let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;

(* Swap pair elements in result list *)
let swapped_list =
List.map (fun (s,i) -> (i,s)) silist;;

(x Extract only the first element of pairs in result list x)
let firstonly_list =
List.map fst silist;;

(* Dereference all elements in the result list *)
let derefed_list =
List.map (!) ref_list;;

(* Form pairs of original value and its square *)
let with_square_list =
List.map (fun r-> (!r, !r *. !r)) ref_list;;

11

Answers: Evaluate map Calls

1 # let silist = [("a",2); ("b",9); ("d",7)]1;;

2 # let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;

3

4 # let swapped_list = List.map (fun (s,i) -> (i,s)) silist;;
5 val swapped_list : (int * string) list =

6 [(2, Ila"); (9, ||bll); (7’ lldll)]

7

8 # let firstonly_list = List.map fst silist;;

9 val firstonly_list : string list =

10 ["a"; "b"; "d"]

11

12 # let derefed_list = List.map (!) ref_list;;

13 val derefed_list : float list =

14 [1.5; 3.6; 2.4; 7.1]

15

16 # let with_square_list = List.map (fun r-> (!r, !r *. Ir)) ref_list;;
17 val with_square_list : (float * float) list =

18 [(1.5, 2.25); (3.6, 12.96); (2.4, 5.76); (7.1, 50.41)]

For completion, here is a simple definition for map:
19 (* Sample implementation of map: not tail recursive *)
20 let rec map trans list =
21 match list with
22 | [-> [
23 | head::tail -> (trans head)::(map trans tail)
24 ;5

Compute a Value based on All Elements via fold

» Folding goes by several other names

» Reduce all elements to a computed value OR
» Accumulate all elements to a final result

» Folding is a very general operation: can write lter, Filter, and
Map via Folding and it is a good exercise to do so

» Will focus first on List.fold_left, then broaden
(*
val List.fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
cur elem next init thelist result
*)
(* sample implementation of fold_left *)
let fold_left func init list =
let rec help cur 1lst =
match 1lst with
(| -> cur
| head::tail -> let next = func cur head in
help next tail

e
B O © 00 N O O WwN =

-
N

in
help init 1list

=
oW

3

13

Exercise: Uses of List.fold left

e
B O O 00 N O O WwN =

R S I N S T Y
N = O ©ow~NO O WwN

23

Determine the values that get bound with each use of fold_left

in the code below. These are common use patterns for fold.
let ilist = [9; 5; 2; 6; 5; 1;1;;

let silist = [("a",2); ("b",9); ("d",7)]1;;

let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;

(* sum ints in the list *)
let sum_oflist =
List.fold_left (+) 0 ilist;;

(* sum squares in the list *)
let sumsquares_oflist =
List.fold_left (fun sum n-> sum + n*n) O ilist;;

(* concatenate all string in first elem of pairs *)
let firststrings_oflist =
List.fold_left (fun all (s,i)-> all”s) "" silist;;

(* product of all floats referred to in the list *)
let product_oflist =
List.fold_left (fun prod r-> prod *. !r) 1.0 ref_list;;

(* sum of truncating float refs to ints %)
let truncsum_oflist =
List.fold_left (fun sum r-> sum + (truncate 'r)) O ref_list;;
14

Answers: Uses of List.fold left

let ilist = [9; 5; 2; 6; 5; 1;1;;
let silist = [("a",2); ("b",9); ("d",7)1;;
let ref_list = [ref 1.5; ref 3.6; ref 2.4; ref 7.1];;

let sum_oflist = List.fold_left (+) 0 ilist;;
val sum_oflist : int = 28

let sumsquares_oflist = List.fold_left (fun sum n-> sum + n*n) O ilist;;
val sumsquares_oflist : int = 172

let firststrings_oflist = List.fold_left (fun all (s,i)-> all”s) "" silist;;
val firststrings_oflist : string = "abd"

let product_oflist = List.fold_left (fun prod r-> prod *. !r) 1.0 ref_list;;
val product_oflist : float = 92.016

let truncsum_oflist =

List.fold_left (fun sum r-> sum + (truncate !'r)) 0 ref_list;;
val truncsum_oflist : int = 13

15

Folded Values Can be Data Structures

» Folding can produce results of any kind including new lists

» Note that since the “motion” of fold_left left to right, the
resulting lists below are in reverse order

let ilist = [9; 5; 2; 6; 5; 1;]1;;
(* Reverse a list via consing / fold *)
let rev_ilist = List.fold_left (fun cur x-> x::cur) [] ilist ;;
val rev_ilist : int list = [1; 5; 6; 2; 5; 9]
(* Generate a list of all reversed sequential sub-lists *)
let rev_seqlists =
List.fold_left (fun all x-> (x::(List.hd all))::all) [[]] ilist ;;
(* x::|1list of prev]| *)
(* |--longer list---|::all *)
val rev_seqlists : int list list =
[[1; 5; 6; 2; 5; 9]; (* all reversed *)
[5; 6; 2; 5; 91; (* all but last reversed *)
[6; 2; 5; 91; (x etc. *)
[2; 5; 91; (* 3rd::2nd::1st::init *)
[5; 91; (* 2nd::1st::init *)
[91; (x 1st::init *)
[11 (* init only *)

16

e
B O © 0NN W N R

fold_left vs fold_right

Left-to-right folding, tail recursion,
generates reverse ordered results

(* sample implementation of fold_left *)
let fold_left func init list =
let rec help cur 1lst =
match 1lst with
I 0 -> cur
| head::tail ->
let next = func cur head in
help next tail
in
help init list

55

List.fold_left f init [el; e2;
=f (... (f (f init el) e2)

.; en]
.) en

let nums = [1;2;3;4];;

List.fold_left (+) O nums;;
- : int = 10

List.fold_left (fun 1 e-> e::1) [] nums;;

- : int list = [4; 3; 2; 1]

© W N T W N R

I T N e S e
N RO ®© ®~NO® U Bd WM R O

Right-to-left folding, NOT tail
recursive, allows in-order results

(* sample implementation of fold_right *)
let rec fold_right func list init =
match list with
0 -> init
| head::tail —->
let rest = fold_right func tail init i
func head rest

.; en] init

o))

List.fold_right f [el; e2;
=f el (f e2 (... (f en init)

let nums = [1;2;3;4];;

List.fold_right (+) nums O;;
- : int = 10

List.fold_right (fun e 1-> e::1) nums [];;
- : int list = [1; 2; 3; 4]

17

(Optional): Distributed Map-Reduce

| 2

>

Have seen that Map + Fold/Reduce are nice ideas to
transform lists and computer answers

In OCaml, tend to have a list of data that fits in memory, call
these functions on that one list

In the broader sense, a data list may instead be extremely
large: a list of millions of web pages and their contents
Won't fit in the memory or even on disk for a single computer
A Distributed Map-Reduce Framework allows processing of
large data collections on many connected computers

» Apache Hadoop

» Google MapReduce
Specify a few functions that transform and reduce single data
elements (mapper and reducer functions)

Frameworks like Hadoop uses these functions to compute

answers based on all data across multiple machines, all
cooperating in the computation

18

Distributed Map-Reduce Schematic
» Map: function that computes category for a datum
» Reduce: function which computes a category's answer
» Individual Computers may be Map / Reduce / Both workers

Assign reduce lasks

Assign map tasks

Output

| ile 1
. Output

1 file 2

-_' R work iems
Map Warker M work items

Input Intermediate Shuffle Qutput

files Map files (sort) ~ Reduce feg

Source: MapReduce A framework for large-scale parallel processing by Paul Krzyzanowski

19

https://www.cs.rutgers.edu/~pxk/417/notes/content/mapreduce.html

