CMSC330: OCaml Data and Pattern Matching

Chris Kauffman

Last Updated:
Tue Oct 3 09:16:24 AM EDT 2023

Logistics

Assignments

» Project 3 Due Fri 06-Oct: Regex — NFA — DFA

» Exam 1 on Thu 05-Oct, covers topics through OCaml
Pattern Matching

Reading: OCaml Docs https://ocaml.org/docs

» Tutorial: Your First Day with OCaml
» Tutorial: OCaml Language Overview

Goals: OCaml Overview
» Finish up Static Types / Type Inference
» Pattern Matching and Linked Lists

Still owe you a Python Practicum video which will go out later
today

https://ocaml.org/docs
https://ocaml.org/docs/first-hour
https://ocaml.org/docs/data-types

Announcements

All Online Lecture Quizzes Due Mon 11:59pm

» If | misspoke at some point, apologies for the confusion it
created
P Lecture quizzes will always be released by Friday mornings

» Always be due following Mon 11:59pm
Unless we announce to the entire class otherwise. . .

Overview and Plan

| 2

| 4

Plan

| 2

OCaml has a variety of built-in data types like Linked Lists,
Arrays, Tuples, Options, Refs, etc.
Also makes it easy to create new types of data via Records
(struct/object like) and Variant / Algebraic Types
(something new)

» Several provided types are actually combinations of Records

and/or Algebraic Types with special syntax support

»> Ex: Lists/Options are Algebraic, Refs are Records, etc.
Pattern Matching is often used with data types in OCaml to
determine the structure of the data and make decisions on it
OCaml allows for destructuring data in various ways that are
slick

Pattern Matching basics with tuples

» Built-in Linked Lists and pattern matching
» Post-Exam: Records and (Variant) Data Types

Pattern Matching in Programming Languages

» Pattern Matching as a programming language feature
checks that data matches a certain structure the executes if so

» Can take many forms such as processing lines of input files
that match a regular expression
» Pattern Matching in OCaml/ML combines
» Case analysis: does the data match a certain structure
» Destructure Binding: bind names to parts of the data
» Pattern Matching gives OCaml/ML a certain “cool” factor

> Associated with the match/with syntax as follows
match something with

| patterni
| pattern2
action;
result2
| pattern3

-> resultl
->

-> result3

(*
(*
(*
(*
(*

patternl gives resultl *)
pattern 2... *)

does some side-effect action *)
then gives result2 *)

pattern3 gives result3 *)

Simple Case Examples of match/with

In it's simplest form, match/with provides a nice multi-case
conditional structure. Constant values can be matched.

yoda_say bool Conditionally execute code

counsel mood Bind a name conditionally

1 (* Demonstrate conditional action using match/with *)

2 let yoda_say bool =

3 match bool with

4 | true -> printf "False, it is not.\n"

5 | false -> printf "Not true, it is.\n"

6 ;3

7

8 (* Demonstrate conditional binding using match/with *)

9 let counsel mood =

10 let message = (* bind message *)

11 match mood with (* based on mood's value *)
12 | "sad" -> "Welcome to adult life"

13 | "angry" -> "Blame your parents"

14 | "happy" -> "Why are you here?"

15 | "ecstatic" -> "I'll have some of what you're smoking"

16 | s -> "Tell me more about "“s (¥ match any string *)
17 in

18 print_endline message;

Matching Tuples

© 0 N O TS WN e

[T S O S
o U W N O

» Tuples are declared via commas as in (a,b,c) or x,y
P Parens option but do improve readability

» Can be pattern matched in several ways as shown below

(* match_tuples.ml: examples of pattern matching with tuples *)
open Printf;;

let has_meaning pair =
match pair with
| (42,42) -> "full of meaning"
| (42,) -> "meaning first" (* _ : don't care / ignore *)
| (_,42) -> "meaning second"
| -> "there is no meaning"

let print_meaning a b ¢ =
match a,b,c with (* create tuple for pat-match *)
| 4,2,_ (* both patterns use same action *)
| _,4,2 -> printf "There is meaning\n";
| x,y,z -> printf "J%d %d %d have no meaning\n" x y z;
A (* x,y,z wild cards: match anything *)

Last case of (x,y,z) destructures the tuple to give its parts
names which can be used in the action

Exercise: Use match/with

Write the following functions using match/with in some way

val xor : val fib : int -> int = <fun>
bool -> bool -> bool = <fun> # £ib 0;;
xor true false;; - : int = 0
: bool = true # fib 2;;

xor true true;; - :int =1
: bool = false # fib 10;;

- : int = 55

[

(* return true if a/b are not
the same booleans *) (* recursive fibonacci via match *)
let xor a b = let rec fib n =

Answers: Use match/with

Answers in match_exercise.ml

val xor :
bool -> bool -> bool = <fun>
xor true false;;
- : bool = true
xor true true;;
- : bool = false
(* return true if a/be are not
the same booleans *)
let xor a b =
match a,b with
| true,false
| false,true -> true
| _ -> false

val fib : int -> int = <fun>

fib 0;;

- : int = 0

fib 2;;

- : int =1

fib 10;;

- int = 55

(* recursive fibonacci via match *)
let rec fib n =

match n with

| 0->0

|1 ->1

[n -> (fib (n-1)) + (fib (n-2))

Terminology: Declarative Programming

» Declarative Programming states how the output relates to
the input, does not detail how to produce that output

» Example: Hypertext Markup Language (HTML) declares text,
pictures, links should be on a web page but not exactly where,

left to the Browser Engine to decide

<html> <body>

Click that button

You know you want to.
</body> </html>

» Pattern matching has a Declarative feel to it: if data matches
this pattern, do the following

> Exactly how the pattern is detected is left to OCaml's
compiler; does guarantee first-to-last checking of patterns

10

https://en.wikipedia.org/wiki/Browser_engine

Lists in Functional Languages
» Long tradition of Cons boxes and Singly Linked Lists in
Lisp/ML languages
» Immediate list construction of with square braces: [1;2;3]
» Note unboxed ints and boxed strings and lists in the below!

Linked Lists and Cons Boxes
Linked lists are comprised of "cons"

leti=7; i
"Cons" b .
%" 20X hoxes inOCaml. They have a data part
— gt nan and a pointer to another box which is
ey & i S”D_’ e E]:] possibly null/nil represented by the empty
list [] and drawn as a slash / in the box
let empty = [1;; empty

data next contents.
let ilist= [6; 1; 21;; i“St% i I ! I ’ I ! l

let strlist = ["a"; "b"; "c"; "d"];; Smmw

ngn g

NI
et 6,326,710 w 32 []7]

len [0] [1] [2] [3] [4]

1“Boxed” means a pointer to data appears in the associated memory cell.

List Parts with Head and Tail

» List.hd list : "head”, returns the first data element
> List.tl list : “tail”, returns the remaining list

let listl = [6; 1; 21;;

let first = List.hd list1;;

let rest = List.tl listl;;

let restrest = List.tl rest;;

let last = List.hd restrest;;

let nothing = List.tl restrest;;

let nada = [1;;

let lenrr = List.length restrest;;

Accessing List Parts with List.hd and List.tl

listl

sl 1] 2]/
A A

=7

first

rest

restrest

ﬂ
=

lllﬁmT

lenr

nothing| /

nada

~

12

List Construction with “Cons” operator

Constructing a list with successive "cons" applications

let box1 =7 :: [1;;

let box2 = 6 :: box1;;
let box3 = 8 :: box2;;

let len = List.length box3;;

let boxA = 9 :: box2;;

let boxB = 4 :: box1;;

let lenA = List.length boxA;; IenA
let lenB = List.length boxB;; IenB

13

Immutable Data

» Lists are immutable in OCaml
» Cannot change list contents once created
» let bindings are also immutable
» Immutable data is certainly a disadvantage if you want to
change it (duh)
» Immutability creates some significant advantages
> Easier reasoning: it won't change
» Compiler may be able to optimize based on immutability
» Can share structure safely to reduce memory usage
> Will have more to say later about trade-offs with immutability
(sometimes called “persistent data”)

14

Optional Exercise:

List Construction/Decomposition

Fill in the Picture

let initial= [6; 1; 21;;

let listA = List.tl initial;;

let listB = 7 :: listA;;

let valX = List.hd listB;;

let listC = (List.tl (List.tl listB));;

let listD= 8 :: 5 :: 4 :: listC;;

initialB—)lGl +—>|1| +—>|2|/|
IistAI:l

listB

valX

listC

listD:!

O 000«

15

Answers: List Construction/Decomposition

Fill in the Picture: ANSWERS

let initial= [6; 1; 21;;

let listA = List.tl initial;;

let listB = 7 :: listA;;

let valX = List.hd listB;;

let listC = (List.tl (List.tl listB));;

let listD= 8 :: 5 :: 4 :: listC;;

16

Patterns and Destructuring of Data

vV Vv

g W N e

g W N e

Patterns can contain structure elements

For lists, this is typically the Cons operator : :
let rec length_A list =
match list with
| 0 -> 0
| head :: tail -> 1 + (length_A tail)
Line 4 pattern binds names head/tail; compiler generates

low level code like

let head List.hd list in
let tail = List.tl list in ...

Pattern matching is relatively safe: the following will work and

not generate any errors despite ordering of cases
let rec length_B list =

match list with

| head :: tail -> 1 + (length_B tail)

[[-> 0

17

Motivating Example: Summing Adjacent Elements

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(* Create a list comprised of the sum of
elements in list. The last element in an odd-length list is

part of the return as is. *)
let rec sum_adj_ie list =
if list = [] then
[
else
let a = List.hd 1list in
let atail = List.tl list in
if atail = [] then
[al
else
let b = List.hd atail in
let tail = List.tl atail in
(at+b) :: (sum_adj_ie tail)

sum_adj_ie [1;2; 3;4; 5;6; 7];;
- : int list = [3; 7; 11; 7]

sum_adj_ie [1;2; 3;4; 5;6; 7;8];;
- : int list = [3; 7; 11; 15]

(*
(*

(*
(*
(*
(*
(*
(*
(*
(*

adjacent pairs of

CASE of empty list *)
base case *)

DESTRUCTURE list *)

bind names *)

CASE of 1 elem left *)

base case *)

CASE of 2 or more elems left x)
destructure list *)

bind names *)

recursive case *)

» Paradigm: select Cases based on Destructuring list

» Note use of Cons :: to build list recursively

18

Pattern Matching on Lists Rocks
For structured data, pattern can improve case analysis markedly.

if/else version of summing adjacent elements

1 let rec sum_adj_ie list =

2 if list = [] then (*x CASE of empty list *)
3 [] (* base case *)

4 else

5 let a = List.hd list in (* DESTRUCTURE list *)

6 let atail = List.tl list in (* bind names *)

7 if atail = [] then (* CASE of 1 elem left *)
8 [a] (* base case *)

9 else (* CASE of 2 or more elems left *)
10 let b = List.hd atail in (* destructure list *)

11 let tail = List.tl atail in (* bind names *)

12 (atb) :: (sum_adj_ie tail) (* recursive case *)

13 55

match/with version of summing adjacent elements

1 let rec sum_adjacent list =

2 match list with (* case/destructure list separated by | *)
3 [0 -> [(* CASE of empty list *)

4 | a:: [] -> [a] (* CASE of 1 elem left *)

5 | a:: b :: tail —> (x CASE of 2 or more elems left *)

6 (at+b) :: sum_adjacent tail

7T 55

Exercise: Swap Adjacent List Elements

N OO W N e

Write the following function using pattern matching

let rec swap_adjacent list = ...;;

(* Swap adjacent elements in a list. If the list is odd length,
the last element is dropped from the resulting list. *)

REPL EXAMPLES
swap_adjacent [1;2; 3;4; 5;6;];;
int list = [2; 1; 4; 3; 6; 5]
swap_adjacent [llall;llbll; Ilcll;lldll; ||e||];;
string list = ["b"; nan; "d"; "C"]
swap_adjacent [];;
'a list = []
swap_adjacent [5];;
int list = []

[- S - N B - N B °3

For reference, solution to summing adjacent elements

let rec sum_adjacent list =

match list with (* case/destructure list separated by | *)
[0 -> 1 (* CASE of empty list *)
[a :: [] -> [a] (* CASE of 1 elem left *)
[a::b:: tail -> (* CASE of 2 or more elems left *)
(atb) :: sum_adjacent tail

20

Answers: Swap Adjacent List Elements

1 (* Swap adjacent elements in a list. If the list is odd length,
2 the last element is dropped from the resulting list. *)

3 let rec swap_adjacent list =

4 match list with

5 | [l -> [(* end of the line *)

6 [a :: [] -> [] (* drop last elem *)

7 | a:: b :: tail -> (* two or more *)

8 b :: a :: (swap_adjacent tail) (* swap order *)

9

Minor

vVVvyYyy

© 00 N O U WN e

v

Details Associated with Pattern Matching

First pattern: pipe | is optional
Fall through cases: no action —=> given, use next action
Underscore _ matches something, no name bound

Examples of These

let cheap_counsel mood =
match mood with

"empty" -> (* first pipe | optional *)
printf "Eat something.\n";

| "happy" | "sad" | "angry" -> (* multiple cases, same action
printf "Tomorrow you won't feel 'Js'\n" mood;

[(* match anything, no binding *

printf "I can't help with that.\n";
Arrays work in pattern matching but there is no size
generalization as there is with list head/tail : arrays aren’t
defined inductively thus don't usually process them with
pattern matching (see code in match_basics.ml)

22

Compiler Checks

> cat -n match_problems.ml

1 (* duplicate case "hi": 2nd case not used *)
2 let opposites str =
3 match str with
Compiler will check 4 | "hi" -> "bye"
. 5 | "hola" -> "adios"
patterns and warn if the A | "hi" -> "oh god, it's you"
following are found 7 | s -> s™" is it's own opposite"
8 3
» Duplicate cases: 9
10 (* non-exhaustive matching *)
Only one Can.be used 11 let list_size list =
so the other is 12 match list with
13 [1 -> "o
unreachable code " Lo iib i [1 -5 non
> Missing cases: data !5 la::bacq: [>3
16 S (* missing longer lists *)

may not n1atCh any > ocamlc -c match_problems.ml

pattern and an File "match_problems.ml", line 6
. . Warning 11: this match case is unused.

exception will result

File "match_problems.ml", line 12

Warning 8: this pattern-matching is not

exhaustive. Here is an example of a

case that is not matched: (_::_::_::_::_I_::[]Q)3

Limits in Pattern Matching

> Patterns have limits

» Can bind names to structural parts

» Check for constants like [1, 1, true, hi

» Names in patterns are always new bindings

» Cannot compare pattern bound name to another binding
» Can't call functions in a pattern

v

Necessitates use of conditionals in a pattern to further
distinguish cases

(* Count how many times elem appears in list *)
let rec count_occur elem list =
match list with
I'0->0
| head :: tail -> (* pattern doesn't compare head and elem *)
if head=elem then (* need an if/else to distinguish *)
1 + (count_occur elem tail)
else
count_occur elem tail

© 00 N O U WN

[
o

3

» If only there were a nicer way... and there is.

when Guards in Pattern Matching

>

KOOO\IO)U’\»P(AJ[\)H'

e e e e
W 00 N O U WN = O

v

A pattern can have a when clause, like an if that is evaluated
as part of the pattern

Useful for checking additional conditions aside from structure
(* version that uses when guards *)
let rec count_occur elem list =
match list with
[0 ->0
| head :: tail when head=elem -> (* check equality in guard *)
1 + (count_occur elem tail)
| head :: tail -> (* not equal, alternative x)
count_occur elem tail
(* Return strings in list longer than given
minlen. Calls functions in when guard *)
let rec strings_longer_than minlen list =
match list with
[0->10

| str :: tail when String.length str > minlen ->
str :: (strings_longer_than minlen tail)
| _ :: tail ->

strings_longer_than minlen tail
Pattern Matching and Guards make for powerful programming
25

(Optional) Exercise: Convert to Patterns/Guards

Convert the following function (helper) to make use of
match/with and when guards.

1 (% Create a list of the elements between the indices start/stop in the
2 given list. Uses a nested helper function for most of the work. *)
3 let elems_between start stop list =

4 let rec helper i 1lst =

5 if i > stop then

6 1

7 else if i < start then

8 helper (i+1) (List.tl 1lst)

9 else

10 let first = List.hd 1lst in

11 let rest = List.tl 1st in

12 let sublst = helper (i+1) rest in

13 first :: sublst

14 in
15 helper 0 list
16 53

26

Answers: Convert to Patterns/Guards

> Note the final “catch-all” pattern which causes failure

> Without it, compiler reports the pattern [] may not be
matched

(* version of elems_between which uses match/with and when guards. *)
let elems_between start stop list =
let rec helper i 1lst =
match 1lst with
| when i > stop -> []

| _ :: tail when i < start -> helper (i+1) tail
| head :: tail -> head :: (helper (i+1) tail)
| _ -> failwith "out of bounds"
in
helper 0 list

o
B O © NN WN

bR

27

Pattern Match Wrap

» Will see more of pattern matching as we go forward

» Most things in OCaml can be pattern matched, particularly
symbolic data types for structures

1 open Printf;;

2

3 (* match a pair and swap elements *)

4 let swap_pair (a,b) =

5 let newpair = (b,a) in

6 newpair

T 5

8

9 (* 3 value kinds possible *)

10 type fruit = Apple | Orange | Grapes of int;;
11

12 (* match a fruit x*)

13 let fruit_string f =

14 match f with

15 | Apple -> "you have an apple"

16 | Orange -> "it's an orange"

17 | Grapes(n) -> sprintf "Jd grapes" n

-
[od]

3

28

