
CMSC330: OCaml Data and Pattern Matching

Chris Kauffman

Last Updated:
Tue Oct 3 09:16:24 AM EDT 2023

1



Logistics

Assignments
▶ Project 3 Due Fri 06-Oct: Regex → NFA → DFA
▶ Exam 1 on Thu 05-Oct, covers topics through OCaml

Pattern Matching

Reading: OCaml Docs https://ocaml.org/docs
▶ Tutorial: Your First Day with OCaml
▶ Tutorial: OCaml Language Overview

Goals: OCaml Overview
▶ Finish up Static Types / Type Inference
▶ Pattern Matching and Linked Lists

Still owe you a Python Practicum video which will go out later
today

2

https://ocaml.org/docs
https://ocaml.org/docs/first-hour
https://ocaml.org/docs/data-types


Announcements

All Online Lecture Quizzes Due Mon 11:59pm
▶ If I misspoke at some point, apologies for the confusion it

created
▶ Lecture quizzes will always be released by Friday mornings
▶ Always be due following Mon 11:59pm

Unless we announce to the entire class otherwise. . .

3



Overview and Plan
▶ OCaml has a variety of built-in data types like Linked Lists,

Arrays, Tuples, Options, Refs, etc.
▶ Also makes it easy to create new types of data via Records

(struct/object like) and Variant / Algebraic Types
(something new)
▶ Several provided types are actually combinations of Records

and/or Algebraic Types with special syntax support
▶ Ex: Lists/Options are Algebraic, Refs are Records, etc.

▶ Pattern Matching is often used with data types in OCaml to
determine the structure of the data and make decisions on it

▶ OCaml allows for destructuring data in various ways that are
slick

Plan
▶ Pattern Matching basics with tuples
▶ Built-in Linked Lists and pattern matching
▶ Post-Exam: Records and (Variant) Data Types

4



Pattern Matching in Programming Languages

▶ Pattern Matching as a programming language feature
checks that data matches a certain structure the executes if so

▶ Can take many forms such as processing lines of input files
that match a regular expression

▶ Pattern Matching in OCaml/ML combines
▶ Case analysis: does the data match a certain structure
▶ Destructure Binding: bind names to parts of the data

▶ Pattern Matching gives OCaml/ML a certain “cool” factor
▶ Associated with the match/with syntax as follows
match something with
| pattern1 -> result1 (* pattern1 gives result1 *)
| pattern2 -> (* pattern 2... *)

action; (* does some side-effect action *)
result2 (* then gives result2 *)

| pattern3 -> result3 (* pattern3 gives result3 *)

5



Simple Case Examples of match/with
In it’s simplest form, match/with provides a nice multi-case
conditional structure. Constant values can be matched.
yoda_say bool Conditionally execute code
counsel mood Bind a name conditionally

1 (* Demonstrate conditional action using match/with *)
2 let yoda_say bool =
3 match bool with
4 | true -> printf "False, it is not.\n"
5 | false -> printf "Not true, it is.\n"
6 ;;
7
8 (* Demonstrate conditional binding using match/with *)
9 let counsel mood =

10 let message = (* bind message *)
11 match mood with (* based on mood's value *)
12 | "sad" -> "Welcome to adult life"
13 | "angry" -> "Blame your parents"
14 | "happy" -> "Why are you here?"
15 | "ecstatic" -> "I'll have some of what you're smoking"
16 | s -> "Tell me more about "^s (* match any string *)
17 in
18 print_endline message;

6



Matching Tuples
▶ Tuples are declared via commas as in (a,b,c) or x,y
▶ Parens option but do improve readability
▶ Can be pattern matched in several ways as shown below

1 (* match_tuples.ml: examples of pattern matching with tuples *)
2 open Printf;;
3
4 let has_meaning pair =
5 match pair with
6 | (42,42) -> "full of meaning"
7 | (42,_) -> "meaning first" (* _ : don't care / ignore *)
8 | (_,42) -> "meaning second"
9 | _ -> "there is no meaning"

10 ;;
11 let print_meaning a b c =
12 match a,b,c with (* create tuple for pat-match *)
13 | 4,2,_ (* both patterns use same action *)
14 | _,4,2 -> printf "There is meaning\n";
15 | x,y,z -> printf "%d %d %d have no meaning\n" x y z;
16 ;; (* x,y,z wild cards: match anything *)

Last case of (x,y,z) destructures the tuple to give its parts
names which can be used in the action

7



Exercise: Use match/with

Write the following functions using match/with in some way

val xor :
bool -> bool -> bool = <fun>

# xor true false;;
- : bool = true
# xor true true;;
- : bool = false

(* return true if a/b are not
the same booleans *)

let xor a b =
...

;;

val fib : int -> int = <fun>
# fib 0;;
- : int = 0
# fib 2;;
- : int = 1
# fib 10;;
- : int = 55

(* recursive fibonacci via match *)
let rec fib n =

...
;;

8



Answers: Use match/with

Answers in match_exercise.ml

val xor :
bool -> bool -> bool = <fun>

# xor true false;;
- : bool = true
# xor true true;;
- : bool = false

(* return true if a/be are not
the same booleans *)

let xor a b =
match a,b with
| true,false
| false,true -> true
| _ -> false

;;

val fib : int -> int = <fun>
# fib 0;;
- : int = 0
# fib 2;;
- : int = 1
# fib 10;;
- : int = 55

(* recursive fibonacci via match *)
let rec fib n =

match n with
| 0 -> 0
| 1 -> 1
| n -> (fib (n-1)) + (fib (n-2))

;;

9



Terminology: Declarative Programming

▶ Declarative Programming states how the output relates to
the input, does not detail how to produce that output

▶ Example: Hypertext Markup Language (HTML) declares text,
pictures, links should be on a web page but not exactly where,
left to the Browser Engine to decide

<html> <body>
<img src="button.jpg"/>
<a href="https://clickthatbutton.com">

Click that button
</a>
You know you want to.

</body> </html>

▶ Pattern matching has a Declarative feel to it: if data matches
this pattern, do the following

▶ Exactly how the pattern is detected is left to OCaml’s
compiler; does guarantee first-to-last checking of patterns

10

https://en.wikipedia.org/wiki/Browser_engine


Lists in Functional Languages
▶ Long tradition of Cons boxes and Singly Linked Lists in

Lisp/ML languages
▶ Immediate list construction of with square braces: [1;2;3]
▶ Note unboxed ints and boxed strings and lists in the below1

1“Boxed” means a pointer to data appears in the associated memory cell.
11



List Parts with Head and Tail
▶ List.hd list : “head”, returns the first data element
▶ List.tl list : “tail”, returns the remaining list

12



List Construction with “Cons” operator ::

13



Immutable Data

▶ Lists are immutable in OCaml
▶ Cannot change list contents once created
▶ let bindings are also immutable

▶ Immutable data is certainly a disadvantage if you want to
change it (duh)

▶ Immutability creates some significant advantages
▶ Easier reasoning: it won’t change
▶ Compiler may be able to optimize based on immutability
▶ Can share structure safely to reduce memory usage

▶ Will have more to say later about trade-offs with immutability
(sometimes called “persistent data”)

14



Optional Exercise: List Construction/Decomposition

15



Answers: List Construction/Decomposition

16



Patterns and Destructuring of Data
▶ Patterns can contain structure elements
▶ For lists, this is typically the Cons operator ::

1 let rec length_A list =
2 match list with
3 | [] -> 0
4 | head :: tail -> 1 + (length_A tail)
5 ;;

▶ Line 4 pattern binds names head/tail; compiler generates
low level code like

let head = List.hd list in
let tail = List.tl list in ...

▶ Pattern matching is relatively safe: the following will work and
not generate any errors despite ordering of cases

1 let rec length_B list =
2 match list with
3 | head :: tail -> 1 + (length_B tail)
4 | [] -> 0
5 ;;

17



Motivating Example: Summing Adjacent Elements
1 (* Create a list comprised of the sum of adjacent pairs of
2 elements in list. The last element in an odd-length list is
3 part of the return as is. *)
4 let rec sum_adj_ie list =
5 if list = [] then (* CASE of empty list *)
6 [] (* base case *)
7 else
8 let a = List.hd list in (* DESTRUCTURE list *)
9 let atail = List.tl list in (* bind names *)

10 if atail = [] then (* CASE of 1 elem left *)
11 [a] (* base case *)
12 else (* CASE of 2 or more elems left *)
13 let b = List.hd atail in (* destructure list *)
14 let tail = List.tl atail in (* bind names *)
15 (a+b) :: (sum_adj_ie tail) (* recursive case *)

# sum_adj_ie [1;2; 3;4; 5;6; 7];;
- : int list = [3; 7; 11; 7]

# sum_adj_ie [1;2; 3;4; 5;6; 7;8];;
- : int list = [3; 7; 11; 15]

▶ Paradigm: select Cases based on Destructuring list
▶ Note use of Cons :: to build list recursively

18



Pattern Matching on Lists Rocks
For structured data, pattern can improve case analysis markedly.
if/else version of summing adjacent elements

1 let rec sum_adj_ie list =
2 if list = [] then (* CASE of empty list *)
3 [] (* base case *)
4 else
5 let a = List.hd list in (* DESTRUCTURE list *)
6 let atail = List.tl list in (* bind names *)
7 if atail = [] then (* CASE of 1 elem left *)
8 [a] (* base case *)
9 else (* CASE of 2 or more elems left *)

10 let b = List.hd atail in (* destructure list *)
11 let tail = List.tl atail in (* bind names *)
12 (a+b) :: (sum_adj_ie tail) (* recursive case *)
13 ;;

match/with version of summing adjacent elements
1 let rec sum_adjacent list =
2 match list with (* case/destructure list separated by | *)
3 | [] -> [] (* CASE of empty list *)
4 | a :: [] -> [a] (* CASE of 1 elem left *)
5 | a :: b :: tail -> (* CASE of 2 or more elems left *)
6 (a+b) :: sum_adjacent tail
7 ;;

19



Exercise: Swap Adjacent List Elements
Write the following function using pattern matching
let rec swap_adjacent list = ...;;
(* Swap adjacent elements in a list. If the list is odd length,

the last element is dropped from the resulting list. *)

REPL EXAMPLES
# swap_adjacent [1;2; 3;4; 5;6;];;
- : int list = [2; 1; 4; 3; 6; 5]
# swap_adjacent ["a";"b"; "c";"d"; "e"];;
- : string list = ["b"; "a"; "d"; "c"]
# swap_adjacent [];;
- : 'a list = []
# swap_adjacent [5];;
- : int list = []

For reference, solution to summing adjacent elements
1 let rec sum_adjacent list =
2 match list with (* case/destructure list separated by | *)
3 | [] -> [] (* CASE of empty list *)
4 | a :: [] -> [a] (* CASE of 1 elem left *)
5 | a :: b :: tail -> (* CASE of 2 or more elems left *)
6 (a+b) :: sum_adjacent tail
7 ;;

20



Answers: Swap Adjacent List Elements

1 (* Swap adjacent elements in a list. If the list is odd length,
2 the last element is dropped from the resulting list. *)
3 let rec swap_adjacent list =
4 match list with
5 | [] -> [] (* end of the line *)
6 | a :: [] -> [] (* drop last elem *)
7 | a :: b :: tail -> (* two or more *)
8 b :: a :: (swap_adjacent tail) (* swap order *)
9 ;;

21



Minor Details Associated with Pattern Matching
▶ First pattern: pipe | is optional
▶ Fall through cases: no action -> given, use next action
▶ Underscore _ matches something, no name bound
▶ Examples of These

1 let cheap_counsel mood =
2 match mood with
3 "empty" -> (* first pipe | optional *)
4 printf "Eat something.\n";
5 | "happy" | "sad" | "angry" -> (* multiple cases, same action *)
6 printf "Tomorrow you won't feel '%s'\n" mood;
7 | _ -> (* match anything, no binding *)
8 printf "I can't help with that.\n";
9 ;;

▶ Arrays work in pattern matching but there is no size
generalization as there is with list head/tail : arrays aren’t
defined inductively thus don’t usually process them with
pattern matching (see code in match_basics.ml)

22



Compiler Checks

Compiler will check
patterns and warn if the
following are found
▶ Duplicate cases:

only one can be used
so the other is
unreachable code

▶ Missing cases: data
may not match any
pattern and an
exception will result

> cat -n match_problems.ml
1 (* duplicate case "hi": 2nd case not used *)
2 let opposites str =
3 match str with
4 | "hi" -> "bye"
5 | "hola" -> "adios"
6 | "hi" -> "oh god, it's you"
7 | s -> s^" is it's own opposite"
8 ;;
9

10 (* non-exhaustive matching *)
11 let list_size list =
12 match list with
13 | [] -> "0"
14 | a :: b :: [] -> "2"
15 | a :: b :: c :: [] -> "3"
16 ;; (* missing longer lists *)

> ocamlc -c match_problems.ml
File "match_problems.ml", line 6
Warning 11: this match case is unused.

File "match_problems.ml", line 12
Warning 8: this pattern-matching is not
exhaustive. Here is an example of a
case that is not matched: (_::_::_::_::_|_::[])

23



Limits in Pattern Matching
▶ Patterns have limits

▶ Can bind names to structural parts
▶ Check for constants like [], 1, true, hi
▶ Names in patterns are always new bindings
▶ Cannot compare pattern bound name to another binding
▶ Can’t call functions in a pattern

▶ Necessitates use of conditionals in a pattern to further
distinguish cases

1 (* Count how many times elem appears in list *)
2 let rec count_occur elem list =
3 match list with
4 | [] -> 0
5 | head :: tail -> (* pattern doesn't compare head and elem *)
6 if head=elem then (* need an if/else to distinguish *)
7 1 + (count_occur elem tail)
8 else
9 count_occur elem tail

10 ;;

▶ If only there were a nicer way. . . and there is.

24



when Guards in Pattern Matching
▶ A pattern can have a when clause, like an if that is evaluated

as part of the pattern
▶ Useful for checking additional conditions aside from structure

1 (* version that uses when guards *)
2 let rec count_occur elem list =
3 match list with
4 | [] -> 0
5 | head :: tail when head=elem -> (* check equality in guard *)
6 1 + (count_occur elem tail)
7 | head :: tail -> (* not equal, alternative *)
8 count_occur elem tail
9 ;;

10 (* Return strings in list longer than given
11 minlen. Calls functions in when guard *)
12 let rec strings_longer_than minlen list =
13 match list with
14 | [] -> []
15 | str :: tail when String.length str > minlen ->
16 str :: (strings_longer_than minlen tail)
17 | _ :: tail ->
18 strings_longer_than minlen tail
19 ;;

▶ Pattern Matching and Guards make for powerful programming
25



(Optional) Exercise: Convert to Patterns/Guards

Convert the following function (helper) to make use of
match/with and when guards.

1 (* Create a list of the elements between the indices start/stop in the
2 given list. Uses a nested helper function for most of the work. *)
3 let elems_between start stop list =
4 let rec helper i lst =
5 if i > stop then
6 []
7 else if i < start then
8 helper (i+1) (List.tl lst)
9 else

10 let first = List.hd lst in
11 let rest = List.tl lst in
12 let sublst = helper (i+1) rest in
13 first :: sublst
14 in
15 helper 0 list
16 ;;

26



Answers: Convert to Patterns/Guards

▶ Note the final “catch-all” pattern which causes failure
▶ Without it, compiler reports the pattern [] may not be

matched
1 (* version of elems_between which uses match/with and when guards. *)
2 let elems_between start stop list =
3 let rec helper i lst =
4 match lst with
5 | _ when i > stop -> []
6 | _ :: tail when i < start -> helper (i+1) tail
7 | head :: tail -> head :: (helper (i+1) tail)
8 | _ -> failwith "out of bounds"
9 in

10 helper 0 list
11 ;;

27



Pattern Match Wrap

▶ Will see more of pattern matching as we go forward
▶ Most things in OCaml can be pattern matched, particularly

symbolic data types for structures
1 open Printf;;
2
3 (* match a pair and swap elements *)
4 let swap_pair (a,b) =
5 let newpair = (b,a) in
6 newpair
7 ;;
8
9 (* 3 value kinds possible *)

10 type fruit = Apple | Orange | Grapes of int;;
11
12 (* match a fruit *)
13 let fruit_string f =
14 match f with
15 | Apple -> "you have an apple"
16 | Orange -> "it's an orange"
17 | Grapes(n) -> sprintf "%d grapes" n
18 ;;

28


