
CMSC330: OCaml Basics

Chris Kauffman

Last Updated:
Thu Sep 28 09:09:59 AM EDT 2023

1

Logistics
Assignments
▶ Project 3 Due Fri 06-Oct: Regex → NFA → DFA
▶ Quiz 2 on Fri 29-Sep in Discussion

REMINDER: Past Semester Quizzes available under
Resources on class web page

▶ Exam 1 on Thu 05-Oct, covers topics through Thu 28-Sep

Reading: OCaml Docs https://ocaml.org/docs
▶ Tutorial: Your First Day with OCaml
▶ Tutorial: OCaml Language Overview

Goals: OCaml Overview
▶ Static Types / Type Inference
▶ Pattern Matching
▶ Aggregate Data

2

https://bakalian.cs.umd.edu/330/resources
https://bakalian.cs.umd.edu/330/resources
https://ocaml.org/docs
https://ocaml.org/docs/first-hour
https://ocaml.org/docs/data-types

A bit of History. . .
▶ 1930s: Alonzo Church invents the Lambda Calculus, a

notation to succinctly describe computable functions.
▶ 1958: John McCarthy and others create Lisp, a programming

language modeled after the Lambda Calculus. Lisp is the
second oldest programming language still widely used.
▶ Descendants of Lisp include Common Lisp, Emacs Lisp,

Scheme, Racket, etc.
▶ Lisp influenced almost every other language that followed it

▶ 1972: Robin Milner and others at Edinburgh/Stanford develop
the Logic For Computable Functions (LCF) Theorem Prover
to do mathy stuff

▶ To tell LCF how to go about its proofs, they invent a Meta
Language (ML) which is like Lisp with a type system
(Hindley-Milner type system)

▶ Folks soon realize that ML is a damn fine general purpose
programming language and start doing things with it besides
programming theorem provers

3

Origins of OCaml
Circa 1990, Xavier Leroy at France’s INRIA looks at
the variety of ML implementations and declares

“C’est nul” == “It’s crap!”
▶ No command line compiler: only top level REPL
▶ Run only on Main Frames, not Personal

Computers (a la Unix to Linux)
▶ Hard to experiment with adding new features

C'est nul!

Xavier Leroy in 2010

Leroy develops the ZINCa system for INRIA’s flavor of ML: Categorical Abstract
Machine Language (CAML) to allow

▶ Separate compilation to bytecode and linking
Later work introduces

▶ Object system: Objective Caml, shortened to OCaml
▶ Native code compiler
▶ Various other tools sweet tools like a time traveling debugger

Question: Bytecode? Native Code? What are these?

aXavier Leroy. The ZINC Experiment. Technical report 117, INRIA, 1990 4

http://caml.inria.fr/pub/papers/xleroy-zinc.pdf

Bytecode versus Native Code Compilation
Native Code Compilation
Convert source code to a form directly understandable by a CPU
(an executable program)

Bytecode Compilation
Convert source code to an intermediate form (bytecode) that is
must be further converted to native code by an interpreter.

Source Code Interpreter
Directly execute source code as it is read by doing on-the-fly
conversions to native code.

System Compilation/Execution Model
Java Compile to Bytecode: javac, Interpret to native: java
C / C++ Native Code Compilation: gcc / clang
Python Interpret Source Code with on-the-fly bytecode creation: python

REPL: python
OCaml Compile to Bytecode: ocamlc, Interpret to native: ocamlrun

Native Code Compilation: ocamlopt
REPL: ocaml

5

Bytecode versus Native-Code Compilation
BYTECODE COMPILER : ocamlc
> ocamlc speedtest.ml # compile to bytecode
> file a.out # show file type
a.out: a /usr/bin/ocamlrun script executable (binary data)

> time ./a.out # time execution
33554432

real 0m0.277s # about a quarter second passed
user 0m0.276s # full debug features available
sys 0m0.000s

NATIVE CODE COMPILER: ocamlopt
> ocamlopt speedtest.ml # compile to native code
> file a.out # show file type
a.out: ELF 64-bit LSB pie executable x86-64

> time ./a.out
33554432

real 0m0.022s # about 1/10th the time: WAY FASTER
user 0m0.022s # BIG BUT: can't use native code with
sys 0m0.000s # OCaml's debugger

6

Influence of Functional Programming and ML
Why are we studying OCaml? No one uses it. . .
– Every Student ever Tasked to Study OCaml

You may never use OCaml for a job, but you will definitely feel its
effects via the adoption of Functional Programming and
ML-inspired static type systems
▶ Java 8 added lambdas, enabled Map/Reduce, uses a Generics

system that is verbose substitute for ML’s polymorphic types
▶ C++ and C have added auto var types inferred by compiler
▶ F# (Microsoft) : OCaml + .NET framework
▶ Swift (Apple) : ML + Objective-C library access
▶ Scala : JVM language with type inference, algebraic data

types, functional features, OO features, every lang feature
known and unknown

▶ Rust: C + Some OCaml syntax + Some Type Inference +
Manage memory entirely at compile time
Incidentally, the first Rust compiler was written in OCaml

7

Exercise: Collatz Computation An Introductory Example

▶ collatz.ml prompts for an integer and computes the Collatz
Sequence starting there

▶ The current number is updated to the next in the sequence via
if cur is EVEN cur=cur/2; else cur=cur*3+1

▶ This process is repeated until it converges to 1 (mysteriously)
or the maximum iteration count is reached

▶ The code demonstrates a variety of Python features and
makes for a great crash course intro

▶ With a neighbor, study this code and identify the features you
should look for in every programming language

8

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Exercise: Collatz Computation An Introductory Example
1 (* collatz.ml: *)
2 open Printf;; (* use printf *)
3 let verbose = true;; (* module-level var *)
4
5 let collatz start maxsteps = (* func of 2 params *)
6 let cur = ref start in (* local variable *)
7 let step = ref 0 in (* refs for mutation *)
8 if verbose then
9 begin

10 printf "start: %d maxsteps %d\n" start maxsteps;
11 printf "Step Current\n";
12 end;
13 while !cur != 1 && !step < maxsteps do
14 if verbose then
15 printf "%3d: %5d\n" !step !cur;
16 begin match !cur mod 2 with (* pattern matching *)
17 | 0 -> cur := !cur/2; (* := is ref-assigment *)
18 | _ -> cur := !cur*3+1; (* !x is dereference *)
19 end;
20 step := !step + 1;
21 done;
22 (!cur,!step) (* return value *)
23 ;;
24 let _ = (* main block *)
25 print_string "Collatz start val:\n";
26 let start = read_int () in
27 let (final,steps) = collatz start 500 in
28 printf "Reached %d after %d iters\n" final steps;
29 ;;

Look for. . . Comments,
Statements/Expressions,
Variable Types,
Assignment, Basic
Input/Output, Function
Declarations, Conditionals,
Iteration, Aggregate Data,
Library System

>> ocamlc collatz.ml
>> ./a.out
Collatz start val:
10

0: 10
1: 5
2: 16
3: 8
4: 4
5: 2
6: 1

9

Answers: Collatz Computation An Introductory Example
⊠ Comments: (* comment between *)
⊠ Statements/Expressions: expressions sort of normal like

x+1 a && b t < m printf "%d" a;
Variables introduced via let x = .. in

⊠ Variable Types: string, integer, boolean are obvious as values,
no type names mentioned. . . isn’t OCaml statically typed?

⊠ Assignment: via let x = expr in or x := expr;
⊠ Basic Input/Output: printf() / read_int()
⊠ Function Declarations: let funcname param1 param2 =
⊠ Conditionals (if-else): if cond then ... else ...

Multiple statements require begin/end
We’ll get to know this sexy match/with character as soon. . .

⊠ Iteration (loops): clearly while cond do, others soon
⊟ Aggregate data (arrays, records, objects, etc):

(ocaml,has,tuples) and others we’ll discuss soon
⊟ Library System: open Printf is like from Printf import *

10

Type Inference
▶ All vars/values are statically typed by compiler BUT. . .
▶ Compiler uses type inference to determine types so programs

rarely states them explicitly; REPL shows this
1 >> ocaml (* start the REPL *)
2 OCaml version 5.0.0
3 Enter #help;; for help.
4 (* TYPE INFERENCE *)
5 # let x = 7;; (* bind x to 7 *)
6 val x : int = 7 (* x must be an integer *)
7 # let doubler i = 2*i;; (* bind doubler to a function *)
8 val doubler : int -> int = <fun> (* int argument, int returns *)
9 (* arg return *)

10
11 (* TYPE CHECKING *)
12 # doubler 9;; (* call doubler on 9 *)
13 - : int = 18 (* result is an integer *)
14 # doubler x;; (* call on x *)
15 - : int = 14 (* ok: x is an integer *)
16 # doubler "hello";; (* call doubler "hello" *)
17 Line 1, characters 8-15: (* Type Checker says: *)
18 1 | doubler "hello";; (* NO SOUP FOR YOU! *)
19 ^^^^^^^
20 Error: This expression has type string but an
21 expression was expected of type int

11

Type Inference During Compilation
While explicit types don’t appear during normal compilation, they
are always present and will appear in error messages

>> cat type_inference_errors.ml
1 open Printf;;
2
3 let doubler i = 2*i;;
4
5 let _ =
6 let four = doubler 2 in
7 let eight = doubler four in
8 let yesyes = doubler "yes" in (* Like in Python, right? *)
9 printf "%d %d %d\n" four eight;

10 printf "%d\n" yesyes;
11 ;;

>> ocamlc type_inference_errors.ml ## Have a tall glass of NOPE
File "type_inference_errors.ml", line 8, characters 23-28:
8 | let yesyes = doubler "yes" in

^^^^^
Error: This expression has type string but an expression

was expected of type int

12

Types and Type Notations
Basic Types
Expected basic types for
high-level langs are present like
int float bool string
A few other special types like
unit and ’a are common that
will be discussed momentarily

Aggregate Types
OCaml has various built-in
aggregate types as well
let ia = [|1; 2; 3|];;
val ia : int array = [|1; 2; 3|]

let sl = ["a"; "b";];;
val sl : string list = ["a"; "b"]

let tup = (true,4.56,"hi");;
val tup : bool * float * string

= (true, 4.56, "hi")

Function Types
Functions have types with each
param separated by an arrow ->
including the final return type
let add a b = a+b;;
val add : int -> int -> int = <fun>

add;;
- : int -> int -> int = <fun>

let selfcat s = s^s;;
val selfcat : string -> string = <fun>

int_of_string;;
- : string -> int = <fun>

let add_pair (a,b) = a+b;;
val add_pair : int * int -> int = <fun>

let give_meaning () = 42;;
val give_meaning : unit -> int = <fun>

let poly_meaning x = 42;;
val poly_meaning : 'a -> int = <fun> 13

Type Annotations

▶ Types are inferred but
one can annotate code
with types

▶ Be aware that conflicts
between annotations and
inferred types will
generate compiler errors

▶ May look at OCaml’s
Module System which
includes Interface Files
that state the types of all
functions/variables,
known as the module
signature

let a = 1;;
val a : int = 1

let x : int = 5;;
val x : int = 5

let y : int = "hi";;
Line 1, characters 14-18:
1 | let y : int = "hi";;

^^^^
Error: This expression has type string but an

expression was expected of type int

let add (a : int) (b : int) : int = a+b;;
val add : int -> int -> int = <fun>

let selfcat (s : string) : string = s+s;;
Line 1, characters 36-37:
1 | let selfcat (s : string) : string = s+s;;

^
Error: This expression has type string but an

expression was expected of type int

14

https://ocaml.org/docs/modules
https://ocaml.org/docs/modules#interfaces-and-signatures

Unit Type for Printing / Side-Effects

▶ The notation () means unit and
is the return value of functions that
only perform side-effects

▶ Roughly equivalent to void in C /
Java / etc.

▶ Often appears as return type for
output functions

▶ Usually don’t about unit returns;
don’t bind result and. . .

▶ Functions with no parameters are
passed () to call them

▶ End statements returning unit
with a semi-colon (;) except at
the top level where ;; is used
instead

1 # print_string;;
2 - : string -> unit = <fun>
3
4 # print_string "hi\n";;
5 hi
6 - : unit = ()
7
8 # printf "%d\n" 42;;
9 42

10 - : unit = ()
11
12 # let meaning () = 42;;
13 val meaning : unit -> int = <fun>
14
15 # meaning;;
16 - : unit -> int = <fun>
17
18 # meaning ();;
19 - : int = 42

15

Exercise: Infer Those Types
▶ Determine the type of each of the following entities
▶ Tuples are created via (a,b) (parens optional)
▶ Lists are created via [x;y;z]
▶ Function types notated with type1 -> type2 -> type3 -> ...

Each function is a one-liner with its return value on its sole line
1 # let sum_diff a b =
2 (a+b,a-b);;
3 val sum_diff : ????
4
5 # let catlist x y z =
6 [x; x^y; x^z; y^z];;
7 val catlist : ????
8
9 # let diff_props a b =

10 (a*b=0, a*b>0, a*b<0) ;;
11 val diff_props : ????
12
13 # let samy_print str =
14 printf "%s - but Samy is my hero\n" str;;
15 val samy_print : ????
16
17 # let cur = 42;;
18 val cur : ????
19
20 # let print_cur () =
21 printf "cur: %d\n" cur;;
22 val print_cur : ???? 16

Answers: Infer Those Types
▶ Determine the type of each of the following entities
▶ Tuples are created via (a,b) (parens optional)
▶ Lists are created via [x;y;z]
▶ Function types notated with type1 -> type2 -> type3 -> ...

Each function is a one-liner with its return value on its sole line
1 # let sum_diff a b =
2 (a+b,a-b);;
3 val sum_diff : int -> int -> int * int = <fun>
4
5 # let catlist x y z =
6 [x; x^y; x^z; y^z];;
7 val catlist : string -> string -> string -> string list = <fun>
8
9 # let diff_props a b =

10 (a*b=0, a*b>0, a*b<0) ;;
11 val diff_props : int -> int -> bool * bool * bool = <fun>
12
13 # let samy_print str =
14 printf "%s - but Samy is my hero\n" str;;
15 val samy_print : string -> unit = <fun>
16
17 # let cur = 42;;
18 val cur : int = 42
19
20 # let print_cur () =
21 printf "cur: %d\n" cur;;
22 val print_cur : unit -> unit = <fun> 17

Top-Level Statements
▶ Names bound to values are introduced with the let keyword
▶ At the top level, separate these with double semi-colon ;;

REPL
>> ocaml
OCaml version 5.0.0
Enter #help;; for help.

let name = "Chris";;
val name : string = "Chris"
let office = 327;;
val office : int = 327
let building = "Shepherd";;
val building : string = "Shepherd"
let freq_ghz = 4.21;;
val freq_ghz : float = 4.21

Source File
(* top_level.ml : demo of top level

statements separated by ;; *)
let name = "Chris";;
let office = 327;;
let building = "Shepherd";;
let freq_ghz = 4.21;;
let doubler a =

2*a
;;
let pair_to_list (a,b) =

[a; b];;

(* Top-level ;; are optional
but help clarity for new
OCaml Coders *)

let inc_it x = x+1

let dec_it y = y-1
18

Syntax Note for ;; in Modules
When writing .ml files, known as Modules, ending top-level
bindings with ;; is optional. Lecture examples will include them to
make definition ends clear but your own code may omit them. This
is a matter of taste in source files but are required in the REPL
which apes top-level declarations.

1 (* mod_sans_semis.ml: *)
2 let astring = "Hello OCaml!"
3
4 let coll_step cur step =
5 let next =
6 if cur mod 2 == 0 then
7 cur / 2
8 else
9 cur * 3 + 1

10 in
11 (next,step+1)
12
13
14 let pi = 3.14159
15
16 let area radius =
17 pi *. radius**2.0

1 (* mod_with_semis.ml: *)
2 let astring = "Hello OCaml!";;
3
4 let coll_step cur step =
5 let next =
6 if cur mod 2 == 0 then
7 cur / 2
8 else
9 cur * 3 + 1

10 in
11 (next,step+1)
12 ;;
13
14 let pi = 3.14159;;
15
16 let area radius =
17 pi *. radius**2.0;;

19

Exercise: Local Statements

▶ Statements in ocaml can be nested somewhat arbitrarily,
particularly let bindings

▶ Commonly used to do actual computations
▶ Local let statements are followed by keyword in

let first = (* first top level binding *)
let x = 1 in (* local binding *)
let y = 5 in (* local binding *)
y*2 + x (* * + : integer multiply and add *)

;;

let second = (* second top-level binding *)
let s = "TAR" in (* local binding *)
let t = "DIS" in (* local binding *)
s^t (* ^ : string concatenate (^) *)

;;

What value gets associated with names first and second?

20

Answers: Local Statements
let first = (* first top level binding *)

let x = 1 in (* local binding *)
let y = 5 in (* local binding *)
y*2 + x (* * + : integer multiply and add *)

;;

(* binds first to
y*2 + x

= 5*2 + 1
= 11

*)

let second = (* second top-level binding *)
let s = "TAR" in (* local binding *)
let t = "DIS" in (* local binding *)
s^t (* ^ : string concatenate (^) *)

;;
(* binds second to

"TAR"^"DIS" (concatenate strings)
= "TARDIS"

*)

21

Clarity

(* A less clear way of writing the previous code *)
let first = let x = 1 in let y = 5 in y*2 + x;;
let second = let s = "TAR" in let t = "DIS" in s^t;;

▶ Compiler treats all whitespace the same so the code evaluates
identically to the previous version

▶ Most readers will find this much harder to read
▶ Favor clearly written code

▶ Certainly at the expense of increased lines of code
▶ In most cases clarity trumps execution speed

▶ Clarity is of course a matter of taste

22

Exercise: Explain the following Compile Error
▶ Below is a source file that fails to compile
▶ Compiler error message is shown
▶ Why does the file fail to compile?

> cat -n local_is_local.ml
1 (* local_is_local.ml : demo of local binding error *)
2
3 let a = (* top-level binding *)
4 let x = "hello" in (* local binding *)
5 let y = " " in (* local binding *)
6 let z = "world" in (* local binding *)
7 x^y^z (* result *)
8 ;;
9

10 print_endline a;; (* print value of a *)
11
12 print_endline x;; (* print value of x *)

> ocamlc local_is_local.ml
File "local_is_local.ml", line 12, characters 14-15:
Error: Unbound value x

23

Answers: Local Bindings are Local
1 (* local_is_local.ml : demo of local binding error *)
2
3 let a = (* top-level binding *)
4 let x = "hello" in (* local binding *)
5 let y = " " in (* local binding *)
6 let z = "world" in (* local binding *)
7 x^y^z (* result *)
8 ;; (* x,y,z go out of scope here *)
9

10 print_endline a;; (* a is well defined *)
11
12 print_endline x;; (* x is not defined *)

▶ Scope: areas in source code where a name is well-defined and
its value is available

▶ a is bound at the top level: value available afterwards; has
module-level scope (module? Patience, grasshopper. . .)

▶ The scope of x ends at Line 8: not available at the top-level
▶ Compiler “forgets” x outside of its scope

24

Exercise: Fix Binding Problem

▶ Fix the code below
▶ Make changes so that it actually compiles and prints both a

and x
1 (* local_is_local.ml : demo of local binding error *)
2
3 let a = (* top-level binding *)
4 let x = "hello" in (* local binding *)
5 let y = " " in (* local binding *)
6 let z = "world" in (* local binding *)
7 x^y^z (* result *)
8 ;; (* x,y,z go out of scope here *)
9

10 print_endline a;; (* print a, it is well defined *)
11
12 print_endline x;; (* x is not defined *)

25

Answers: Fix Binding Problem
One obvious fix is below
> cat -n local_is_local_fixed.ml

1 (* local_is_local_fixed.ml : fixes local binding
2 error by making it a top-level binding
3 *)
4
5 let x = "hello";; (* top-level binding *)
6
7 let a = (* top-level binding *)
8 let y = " " in (* local binding *)
9 let z = "world" in (* local binding *)

10 x^y^z (* result *)
11 ;; (* x,y,z go out of scope here *)
12
13 print_endline a;; (* print a, it is well defined *)
14
15 print_endline x;; (* print x, it is well defined *)

> ocamlc local_is_local_fixed.ml
> ./a.out
hello world
hello

26

Mutable and Immutable Bindings
Q: How do I change the
value bound to a name?
A: You don’t.

▶ OCaml’s default is
immutable or persistent
bindings

▶ Once a name is bound, it
holds its value until going
out of scope

▶ Each let/in binding
creates a scope where a
name is bound to a value

▶ Most imperative languages
feature easily mutable
name/bindings

> python
Python 3.6.5
>>> x = 5
>>> x += 7
>>> x
12

// C or Java
int main(...){

int x = 5;
x += 5;
System.out.println(x);

}

(* OCaml *)
let x = 5 in
???
print_int x;;

27

Approximate Mutability with Successive let/in

▶ Can approximate mutability by successively rebinding the
same name to a different value

1 let x = 5 in (* local: bind FIRST_x to 5 *)
2 let x = x+5 in (* local: SECOND_x is FIRST_x+5, FIRST_x gone *)
3 print_int x;; (* prints 10: most recent x, SECOND_x *)
4 (* top-level: SECOND_x out of scope *)
5 print_endline "";;

▶ let/in bindings are more sophisticated than this but will need
functions to see how

▶ OCaml also has explicit mutability via several mechanisms
▶ ref: references which can be explictily changed
▶ arrays: cells are mutable by default
▶ records: fields can be labelled mutable and then changed

We’ll examine these soon

28

Exercise: let/in Bindings

▶ Trace the following program
▶ Show what values are printed and why they are as such

1 let x = 7;;
2 let y =
3 let z = x+5 in
4 let x = x+2 in
5 let z = z+2 in
6 z+x;;
7
8 print_int y;;
9 print_endline "";;

10
11 print_int x;;
12 print_endline "";;

29

Answers: let/in Bindings

▶ A later let/in supersedes an earlier one BUT. . .
▶ Ending a local scope reverts names to top-level definitions

1 let x = 7;; (* top-level x <-------+ *)
2 let y = (* top-level y <---+ | *)
3 let z = x+5 in (* z = 12 = 7+5 | | *)
4 let x = x+2 in (* x = 9 = 7+2 | | *)
5 let z = z+2 in (* z = 14 = 12+2 | | *)
6 z+x;; (* 14+9 = 23 ------+ | *)
7 (* end local scope | | *)
8 print_int y;; (* prints 23 ------+ | *)
9 print_endline "";; (* | *)

10 (* | *)
11 print_int x;; (* prints 7 -----------+ *)
12 print_endline "";; (* *)

OCaml is a lexically scoped language: can determine name/value
bindings purely from source code, not based on dynamic context.

30

Immediate Immutability Concerns
Q: What’s with the whole let/in thing?
Stems for Mathematics such as. . .
Pythagorean Thm: Let c be they length of the hypotenuse of a right
triangle and let a, b be the lengths of its other sides. Then the relation
c2 = a2 + b2 holds.

Q: If I can’t change bindings, how do I get things done?
A: Turns out you can get lots done but it requires an adjustment of
thinking. Often there is recursion involved.

Q: let/in seems bothersome. Advantages over mutability?
A: Yes. Roughly they are
▶ It’s easier to formally / informally verify program correctness
▶ Immutability opens up possibilities for parallelism

Q: Can I still write imperative code when it seems appropriate?
A: Definitely. Some problems in CMSC330 will state constraints like
“must not use mutation” to which you should adhere or risk deductions.

31

Exercise: Collatz Sans Mutation
1 (* collatz_rec.ml: *)
2 open Printf;;
3 let verbose = true;;
4 let collatz start maxsteps =
5
6 let rec collatz_step cur step =
7 if verbose then
8 printf "%3d: %5d\n" step cur;
9 let rem = cur mod 2 in

10 match (cur,step=maxsteps,rem) with
11 (1,_, _) -> (cur,step)
12 | (_,true,_) -> (cur,step)
13 | (_,_, 0) -> collatz_step (cur/2) (step+1)
14 | (_,_, _) -> collatz_step (cur*3+1) (step+1)
15 in
16 if verbose then
17 begin
18 printf "start: %d maxsteps %d\n" start maxsteps;
19 printf "Step Current\n";
20 end;
21 collatz_step start 0
22 ;;
23 let _ =
24 print_string "Collatz start val:\n";
25 let start = read_int () in
26 let (final,steps) = collatz start 500 in
27 printf "Reached %d after %d iters\n" final steps;
28 ;;

Consider this alternate
version of our first
Collatz sequence
computation. How does
it compute the sequence?
See any new tricks?

32

Answers: Collatz Sans Mutation
▶ Uses a “helper function” which is nested in the local scope of

the outer function as in
let collatz start maxsteps = (* outer function *)

let rec collatz_step cur step = (* nested / inner function *)
... (* can access outer func *)

in (* vars like maxsteps *)
...
collatz_step start 0

;;

▶ collatz_step uses recursion to generate the Collatz
sequence
▶ Doesn’t that risk stack overflow for long Collatz sequences?
▶ Not with the tail call optimization used by most functional

languages, OCaml and Scheme included
▶ Recursive functions can be set up with a let rec ...

binding (annoying that this is not the default but no bigee)
▶ Inner function uses somewhat more complex match/with

statement for case analysis
33

https://en.wikipedia.org/wiki/Tail_call

