
CMSC330: Python Practicum

Chris Kauffman

Last Updated:
Thu Sep 21 09:16:47 AM EDT 2023

1

Logistics

Assignments
▶ Lecture Quiz 3 up later, due Tue
▶ Project 2 no late BUT +4 late tokens for all

Reading
Review only

Goals
▶ Wrap up FSMs
▶ Python in Practice

2

“Coding Day”

practicum (noun) a practical section of a course of study
According to what I’ve been told, it is typical in this course to
include a few periods in which we just code something in a
language to gain insight into the “flavor” of the language and see
course techniques in practice.

3

A Quick Demo of Program Development
Spell Checker
▶ Spell check the contents of a text file
▶ Use dictionary words stored in another file
▶ Produce a new file with misspelled words identified or

corrected
▶ Provides some module level functions that could be used by

other apps
▶ Provides stand-alone command line run for simple usage

Techniques
▶ Interactive and Iterative development
▶ Docstrings and help features in Python
▶ Regex in action
▶ Building core logic introducing flexibility via first-class

functions
4

Exercise: Mark Incorrectly Spelled Words

>> cat gettysburg.mispelled.txt
Four score and seven years agoo our pathers brought forth on this
continent, a new nation, conceived in Libertie, and dedicated to the
proposicion that all peops are created equal.

Abraham Lincoln
November 19, 1863

>> cat gettysburg.mispelled.txt.checked
Four score and seven years **agoo** our **pathers** brought forth on this
continent, a new nation, conceived in **Libertie**, and dedicated to the
proposicion that all **peops** are created equal.

Abraham **Lincoln**
November 19, 1863

Identify a general methodology for creating the “checked” file from
the first file

5

Answers: Let’s Code It

▶ Completed version of spellcheck.py is in the codepack
▶ Will demonstrate the general flow of how I reasoned about so

that you can see how the code built outwards
▶ Constantly googling for “what’s the python function for X”

which is totally expected when there are so many details. . .

6

Interactive + Iterative Development

▶ Python allows reloading modules after function definition
changes

▶ Use the importlib module; useful for interactive
development1

>>> from importlib import reload
>>> import spellcheck as sc
>>> sc.spellcheck_file("gettysburg.txt")
...
results don't look right
edit code to improve, save and reload
>>> reload(spellcheck)
<module 'spellcheck' from 'spellcheck.py'>

>>> sc.spellcheck_file("gettysburg.txt")
...
results look better, edit, save, reload, rerun

1Of course if you are using emacs you can fire up an inferior Python shell
and use C-c C-c to send your modified buffer to the shell but I digress. . .

7

Alternative Designs and Extensions

▶ Make the checkers objects in a class hierarchy; initialize them
with data, don’t need to pass around locals() for context

▶ Add a checker with a “personal dictionary” for words like
“Abraham” which aren’t in the standard dictionary, allow
saving / loading personal dictionary

▶ Adjust the file processing to avoid the “slurp”; read a line at a
time as is more “Pythonic”; possibly adjust output as well so
one never needs to store the entirety of input/output in
memory

8

