
CMSC330: Finite State Machines

Chris Kauffman

Last Updated:
Thu Sep 21 09:28:00 AM EDT 2023

1

Logistics

Assignments
▶ Project 2 “RNA

Transcription” Due 19-Sep
▶ Project 3 is cooking

Goals
▶ Recap of Regexs
▶ Finite State Machines
▶ Determinism vs

Non-Determinism
▶ Regex to NFA
▶ NFA to DFA

Reading
Introduction to the Theory of
Computation by Michael Sipser
▶ Chapter 1 covers theory

associated with Finite State
Machines and their relation
to Regular Expresssions

▶ For the theoretically
inclined, treatment is much
tighter w/ proofs than our
in-class work

Prof Bakalian’s Notes on FSM
▶ A good summary of the

topics we’ll cover
▶ Linked on course schedule

2

Automata Theory

▶ Likely you’ve studied Boolean Logic in a previous class
▶ Allows the “computation” of certain outcomes based on

inputs but has limits in power, does not amount to what a
“computer” can do

▶ Example: cannot recognize Regular Expressions with Boolean
Logic as Regexes can recognize infinite sets of strings

▶ Automata Theory is the branch of Math / CS that studies
what (theoretical) machines with different properties can do

▶ By introducing notions of state (and time) one can build
progressively more powerful machines

3

Levels of Computational Power
▶ A full course on Automata

Theory would study each
level, comparing,
contrasting, formalizing

▶ Wouldn’t leave much time
for other fun things like
Python, OCaml, Racket. . .

▶ In CMSC 330, will study
Finite State Machines
(FSM) also known as
Finite Automata (FA) as
an example of one level of
power that is useful in
language processing and is
connected to Regular
Expressions

Source: Wikip “Automata Theory”

The class of problems that can
be solved grows with more
powerful machines.

4

https://en.wikipedia.org/wiki/Automata_theory

Even-Bs: A Leading Example

Let Even-Bs be the set of all strings composed of a and b with at
least 2 b’s and an even number of b’s.
▶ Example members of Even-Bs are bb, abb, aaababaa,

abbabb, abba, babaaa, ...
▶ Regex matching strings in Even-Bs: (a*ba*ba*)+
▶ Deterministic Finite Automata (DFA) recognizing Even-Bs

S1 S2 S3 S4

a

b

a

b

a

b

a

b

5

DFA Diagram Notation
▶ DFAs are mathematical graphs comprised of vertices

(circles) and directed edges (arrows between circles)
▶ Each circle is a state; there are a finite number of them
▶ Each edge / transition is labeled with at least one item from

the input alphabet like a or b
▶ There is one start state S1 in this case; note the arrow to it
▶ There are one or more accept states which are drawn with 2

circles like S3

S1 S2 S3 S4

a

b

a

b

a

b

a

b

6

Exercise: DFA Example Recognition / Rejection

S1 S2 S3 S4

a

b

a

b

a

b

a

b

v
input: abbabb
state: S1 a-> S1

v
input: abbabb
state: S1 b-> S2

v
input: abbabb
state: S2 b-> S3

v
input: abbabb
state: S3 a-> S3

v
input: abbabb
state: S3 b-> S4

v
input: abbabb
state: S4 b-> S3

v
input: abbabb
state: S3 ACCEPT

v
input: bbaaba
state: S1 b-> S2

v
input: bbaaba
state: S2 b-> S3

v
input: bbaaba
state: S3 a-> S3

v
input: bbaaba
state: S3 a-> S3

v
input: bbaaba
state: S3 b-> S4

v
input: bbaaba
state: S4 a-> S4

v
input: bbaaba
state: S4 REJECT

v
input: ababbba
???
???

Complete the state transitions

7

Answers: DFA Example Recognition / Rejection

S1 S2 S3 S4

a

b

a

b

a

b

a

b

v
input: abbabb
state: S1 a-> S1

v
input: abbabb
state: S1 b-> S2

v
input: abbabb
state: S2 b-> S3

v
input: abbabb
state: S3 a-> S3

v
input: abbabb
state: S3 b-> S4

v
input: abbabb
state: S4 b-> S3

v
input: abbabb
state: S3 ACCEPT

v
input: bbaaba
state: S1 b-> S2

v
input: bbaaba
state: S2 b-> S3

v
input: bbaaba
state: S3 a-> S3

v
input: bbaaba
state: S3 a-> S3

v
input: bbaaba
state: S3 b-> S4

v
input: bbaaba
state: S4 a-> S4

v
input: bbaaba
state: S4 REJECT

v
input: ababbba
state: S1 a-> S1

v
input: ababbba
state: S1 b-> S2

v
input: ababbba
state: S2 a-> S2

v
input: ababbba
state: S2 b-> S3

v
input: ababbba
state: S3 b-> S4

v
input: ababbba
state: S4 b-> S3

v v
input: ababbba input: ababbba
state: S3 a-> S3 state: S3 ACCEPT 8

DFAs are Not Unique

Even-Bs DFA #1

S1 S2 S3 S4

a

b

a

b

a

b

a

b

Even-Bs DFA #2

S1 S2 S3

a

b

a

b

a

b

▶ Both these DFAs recognize
the set Even-Bs but are
shaped differently

▶ DFA Minimization finds a
DFA which accepts the
same input set but has a
minimal number of states
(subject to caveats)

▶ Regular Expressions are not
unique either:

Even-Bs Regex 1: (a*ba*ba*)+
Even-Bs Regex 2: (a*ba*b)+a*

9

https://en.wikipedia.org/wiki/DFA_minimization#CITEREFHopcroftUllman1979

Finite State Machine Formalisms
Formally, a FSM is a 5-tuple (e.g. 5 parts, order matters)

Description Sym Even-Bs DFA #1
1 Alphabet: set of allowable characters Σ {a, b}
2 Set of States in FSM S S = {S1, S2, S3, S4}
3 Starting state of the FSM s0 S1
4 Set of Final / Accept States F {S3}
5 Set of transitions (labeled edges)1 δ {(S1,a,S1), (S1,b,S2),

(S2,a,S2), (S2,b,S3),
(S3,a,S3), (S3,b,S4),
(S4,a,S4), (S4,b,S3)}

S1 S2 S3 S4

a

b

a

b

a

b

a

b

Even-Bs DFA #1
1The character δ is the lower-case Greek letter delta, often used to

represent “change” as in a “change of state”; it’s capital version is ∆ 10

https://en.wikipedia.org/wiki/Delta_(letter)

Exercise: DFA Practice

S1 S2 S3

a

b

c

c

a
b

a

b

c

1. Show the formal 5-tuple of
parts for this DFA

2. What set of strings does it
accept?

3. Find a regular expression
that matches that set

4. What set of strings does this
Regex match?
Regex: [ab]*aab[ab]*

5. Design a DFA that accepts
the same set of strings

11

Answers: DFA Practice

S1 S2 S3

a

b

c

c

a
b

a

b

c

Ends-C DFA

1. Show the formal 5-tuple of parts for
this DFA
1. Alphabet: {a,b,c}
2. States: {S1,S2,S3}
3. Start: S1
4. Accept: {S2}
5. Transitions:

{(S1,a,S1),(S1,b,S1),(S1,c,S2),
(S2,a,S3),(S2,b,S3),(S2,c,S2),
(S3,a,S3),(S3,b,S3),(S3,c,S2)}

2. What set of strings does it accept?
Strings of a,b,c the end with c

3. Find a regular expression that
matches that set
Regex: [abc]*c$
Note use of $ to denote end of input

S1 S2 S3

a,b

c

c
a,b

a,b

c
Ends-C DFA with Alt Notation

4. What set of strings does this Regex
match?
Regex: [ab]*aab[ab]*
Strings of a,b that contain the
substring aab

5. Design a DFA that accepts the same
set of strings

S1 S2 S3 S4

a
b

a

b

a

b

a,b

Has-AAB DFA
Adapted from Sipser Figure 1.13

12

DFAs in Code as Data Structures
1 # even_Bs_dfa.py:
2 even_Bs_dfa = {
3 "alphabet":{"a","b"},
4 "nstates":4,
5 "start":1,
6 "accept":{3},
7 "trans":[{},
8 {"a":1,"b":2},
9 {"a":2,"b":3},

10 {"a":3,"b":4},
11 {"a":4,"b":3}],
12 }
13
14 def dfa_match(dfa,instr):
15 state = dfa["start"]
16 trans = dfa["trans"]
17 for i in instr:
18 if not i in dfa["alphabet"]:
19 return "Error"
20 state = trans[state][i]
21 if state in dfa["accept"]:
22 return "Accept!"
23 else:
24 return "Reject"

▶ Encode the 5 parts of the
DFA in some sort of data
structure

▶ Python’s built-in Lists,
Dictionaries, Sets make this
pleasant

▶ dfa_match(dfa,instr)
will return Accept / Reject
string using DFAs encoded
as the example above

▶ The general goal of
compiling a regular
expression is to produce this
kind of data structure

▶ Study the data structure
and explain its parts

13

DFAs as Code
1 // even_Bs_dfa.c:
2 int even_Bs_dfa(char *input){
3 int pos=-1;
4 S1:
5 pos++;
6 switch(input[pos]){
7 case 'a': goto S1;
8 case 'b': goto S2;
9 case '\0': goto REJECT;

10 default: goto ERROR;
11 }
12 S2:
13 pos++;
14 switch(input[pos]){
15 case 'a': goto S2;
16 case 'b': goto S3;
17 case '\0': goto REJECT;
18 default: goto ERROR;
19 }
20 S3:
21 pos++;
22 switch(input[pos]){
23 case 'a': goto S3;
24 case 'b': goto S4;
25 case '\0': goto ACCEPT;
26 default: goto ERROR;
27 }
28 S4:
29 pos++;
30 switch(input[pos]){
31 case 'a': goto S4;
32 case 'b': goto S3;
33 case '\0': goto REJECT;
34 default: goto ERROR;
35 }
36 REJECT:
37 return 0;
38 ACCEPT:
39 return 1;
40 ERROR:
41 return -1;
42 }

▶ A common output option for
parsing tools like Lex and
Yacc is to encode state
machines as positions in
code

▶ Instruction Pointer is “state”
▶ Tools process a Regex or

more complex language
Grammar then generates C
code that represents the
state machine

▶ Generated C code is nigh
impenetrable BUT compiles
to much faster recognition
routines than alternatives

▶ With all those goto’s, you
know. . . Here be Dragons 14

https://en.wikipedia.org/wiki/Lex_(software)
https://en.wikipedia.org/wiki/Yacc
https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools

Formal Regular Expressions

▶ Introduced Regexs in code somewhat informally as a pattern
matching device

▶ Formally, Regular Expressions are
1. ϵ: the Empty String (zero-length) (Greek Letter “epsilon”)
2. ∅: the empty set of no regexs
3. Single item: like a from an alphabet Σ = a, b
4. R1R2: concatenation of two regexs
5. R1|R2: union / alternation of two regexs
6. R∗

1: zero-or-more of a regex, its Kleene Closure2

▶ These 6 parts are minimal, allow construction of all the regex
convenience mechanisms we’ve seen so far, and limit the cases
of in formal proofs
Ex: Shorthand: [ab]+ Formal: (a|b)(a|b)∗

Ex: Shorthand: a?b+aa Formal: (a|ϵ)bb∗aa

2Named for Stephen Kleene who studied under Alonzo Church and
contributed to the development of Church’s Lambda Calculus

15

https://en.wikipedia.org/wiki/Epsilon
https://en.wikipedia.org/wiki/Stephen_Cole_Kleene

Equivalence of FSM and Regular Expressions
Definition: A language is Regular if some Finite State Machine
accepts it. The FSM may be either Deterministic or
Non-deterministic.

Using a series of proofs one can show the following:
1. A language is Regular if and only if some Regular Expression

describes it; shown by giving a procedure to convert a Regular
Expression to a Non-deterministic Finite Automata (NFA)

2. Regular Expressions are closed under the 3 regular
operations of concatenation, union, and star (Kleene closure)
e.g. all regexs that can exist can be built from simpler regexs
with these ops

3. Every NFA has an equivalent DFA; procedures exist to convert
NFAs to DFAs that accept the same language; we’ll study this

Conclusion: Regular Expressions and Finite State Machines are
equivalent in power, allow recognition of identical sets

If you want to see those proofs, grab a copy of Sipser’s
Introduction to the Theory of Computation 16

Nonregular Languages and the Limits Regexes/FSMs
▶ Before moving forward, note that Regexs / FSMs hit practical

limits in power quickly and in cases we’d want to overcome
▶ Example: Let Equal-ABs be the set of all strings start some

number n of a characters and are followed immediately by n b
characters.
▶ Equal-ABs = {anbn|n > 0}
▶ Equal-ABs = {ab, aabb, aaabbb, aaaabbbb, ...}

▶ Fool’s Errands:
▶ Construct a DFA to accept Equal-ABs
▶ Write a Regex matching Equal-ABs
▶ No such DFA or Regex Exists

▶ Why do we care? Well, a similar set is Balanced-Paren, the
set of all strings that have properly balanced parentheses
▶ Balanced-Paren = {(), (()), ((())), ...}

▶ One needs a more powerful machine than FSMs / Regexs to
properly recognize Equal-ABs and Balanced-Parens which is
crucial for processing programming languages

17

Flow of “Compiling” Regexs

Given a Regular Expression R, the notion of “Compiling” it usual
boils down to. . .

1. Use a procedure to convert it to a Non-deterministic Finite
Automata N

2. Use N for matching input directly OR
3. Use a procedure to convert3 N to a Deterministic Finite

Automata D

4. Then match the input with D

Will examine each items and overview the procedures mentioned
BUT an upcoming assignment will have you code some of these
procedures to a get a feel for them

3There are also procedures to convert DFAs and NFAs into equivalent
Regexs. Not so useful in computing practice but useful to prove the
equivalence of FSMs and Regexs. They are covered in Sipser’s textbook.

18

Non-Deterministic Finite Automata: Differences 1
▶ First difference from DFAs: relax constraint of “every state

has one edge for every member of the alphabet”
▶ Input chars may appear on multiple edges: choices
▶ Some states may not transition from every input

▶ Input is accepted if some path exists for the input to an
accept state for the entire input

▶ When there are two transitions with a on it, try both: e.g.
search for an accepting path

Consider the Regex (a|b)*b(a|b)(a|b): strings of a,b with b in
the third to last position; name that set of strings B-Third-Last.

NFA Recognizing B-Third-Last: [ab]*b[ab]{2}

S1 S2 S3 S4

a,b

b a,b a,b

19

NFA Example Recognition of B-Third-Last: Search Tree

S1 S2 S3 S4

a,b

b a,b a,bV
input: ababbaa
state: S1 a-> S1

V
input: ababbaa
state: S1 b-> S1,S2
PICK S1--PICK S2

V V
input: ababbaa input: ababbaa
state: S1 a-> S1 state: S2 a-> S3

V V
input: ababbaa input: ababbaa
state: S1 a-> S1,S2 state: S3 b-> S4
PICK S1---PICK S2 V

V V input: ababbaa
input: ababbaa input: ababbaa state: S4 b-> REJECT
state: S1 b-> S1,S2 state: S2 b-> S3 No b-trans for S4
PICK S1--------------------PICK S2 V

V V input: ababbaa
input: ababbaa input: ababbaa state: S3 a-> S4
state: S1 a-> S1 state: S2 a-> S3 V

V V input: ababbaa
input: ababbaa input: ababbaa state: S4 a-> REJECT
state: S1 a-> S1 state: S3 a-> S4 No a-trans for S4

V V
input: ababbaa input: ababbaa
state: S1 REJECT state: S4 ACCEPT!

20

Why DFA vs NFA?
▶ DFAs involve no choices as they check input, computational

benefits, may have a large number of states, more difficult to
convert Regex directly to a DFA

▶ NFAs allow choices which induces the need to search,
computationally more cumbersome, easier to convert Regexs
to NFAs, can be converted to DFAs

NFA Accepting B-Third-Last

S1 S2 S3 S4

a,b

b a,b a,b

DFA Accepting B-Third-Last

Saaa Sbaa Saba Sbba

Saab Sbab Sabb Sbbb

b

a

a

b

a

b

a

ba

b

a

b

a

b

a

b

21

NFA Differences 2: Epsilon Transitions
▶ Recall ϵ is the empty string, a Regex itself and a sort of

“special” character
▶ Second difference of NFAs from DFAs: allow epsilon

transitions (ϵ-transitions) between states along ϵ-edges
▶ Consumes no input
▶ Change state without affecting input position

▶ Example: Consider the Regex a+b+a (formal aa∗bb∗a)
▶ Here are two NFAs which accept the same Regex

With ϵ-Transitions

S1 S2 S3 S4

S5

a

ϵ

ϵ b

ϵ
a

No ϵ-Transitions

S1 S2 S3 S4
a

a

b

b

a

22

NFA Recognition with Epsilon Transitions
V

input: aaabba
state: S1 a-> S2

V
input: aaabba
state: S2 a-> REJECT

S2 eps-> S1
V

input: aaabba
state: S1 a-> S2

V
input: aaabba
state: S2 a-> REJECT
state: S2 eps-> S1

V
input: aaabba
state: S1 a-> S2

V
input: aaabba
state: S2 eps-> S3

V
input: aaabba
state: S3 b-> S4

V
input: aaabba
state: S4 b-> REJECT
state: S4 eps-> S3

V
input: aaabba
state: S3 b-> S4

V V
input: aaabba input: aaabba
state: S4 a-> S5 state: S5 ACCEPT

S1 S2 S3 S4

S5

a

ϵ

ϵ b

ϵ
a

NFA which accepts a+b+a using ϵ-transitions

▶ In this simple example, only choices are
REJECT or take the ϵ-transitions

▶ Taking ϵ-transitions change states without
affecting input

▶ In more complex NFAs, a state may have
valid input character transitions and
ϵ-transitions; requires searching all
possible paths for an ACCEPT sequence

23

Why Allow ϵ-Transitions?

▶ ϵ-transitions don’t add any additional power to NFAs BUT. . .
▶ They make it much easier to convert Regexs to NFAs
▶ Recall the 3 operators that construct a larger Regex from a

smaller ones
▶ R1R2: Concatenation
▶ R1|R2: Union
▶ R∗

1: Star (Kleene Closure)
▶ Each uses ϵ-transitions during Regex to NFA conversion

24

Regex to NFA Conversion: Parse Trees
▶ Idea behind conversion procedure is easier to understand with

a parse tree for a regular expression
▶ Is implied by the formal definition of a Regular Expression but

enlightening to look examples explicitly
▶ Shown are both Drawings and a Code-like constructions

Parse Tree for aa∗bb∗a
Concat(Char(a),

Concat(Star(Char(a)),
Concat(Char(b),

Concat(Star(Char(b)),
Char(a)))))

Concat

Char(a) Concat

Star

Char(a)

Concat

Char(b) Concat

Star

Char(b)

Char(a)

Parse Tree for ((a|b)aa)∗

Star(Concat(Union(Char(a),
Char(b))

Concat(Char(a),
Char(a))))

Star

Concat

Union

Char(a) Char(b)

Concat

Char(a) Char(a)

25

Principls of Regex to NFA Conversions

▶ Each of the constructs comprising Regular Expressions has an
NFA equivalent

▶ Typically work bottom up on the the Regex parse tree
converting leaves to small NFAs, then combining those on the
way up through interior nodes
▶ Recursion helps a lot with this
▶ Convert all child trees to NFAs recursively, combine/alter the

child NFAs according to the interior node’s operation
▶ Operations like Union, Concatenation, and Star may introduce

additional states and use ϵ-transitions to “glue” smaller NFAs
together

▶ When the Root of the parse tree is finished, have a single NFA
which will Accept all strings the Regex matches

▶ This process is the basis for the constructive proof that
Regexs and FSMs are equivalent

26

Example Regex to NFA Conversion

This is somewhat involved and is
shown in a separate linked
handout which looks like the
nearby miniaturized version. It
outlines the process on a specific
example describing how
Char(x), Union(x,y),
Concat(x,y), Star(x) are
converted to NFAs. The handout
is near to where this slide is
located.

ϵ

Concat

Union Concat

Char(a) Char(a) Char(a)Char(b)

Star

Concat

Union Concat

a b a a

Concat

a

b

ϵ a a

Star

a

b

ϵ

ϵ

a aϵ

ϵ

ϵ

a

b

ϵ

a aϵ

ϵ

ϵ

ϵ

ϵ

ϵ

((a|b)aa)*

([ab]aa)*

1

2

3

4

5

A Sample Regex to NFA Conversion
UMD CMSC330 - Kauffman

The parse tree for following formal
regex is shown nearby.

In a program, it would likely be
written with some shorthand
conventions like this:

In a bottom up conversion, the leaf
nodes which are Char() parts of the
Regex can be converted to 2-state
NFAs which Accept after reading the
single input character indicated

(Left branch) The Union of two
NFAs is constructed by introducing
a new start state with ϵ-edges to the
two other NFA start states. Accept
states for both sub-NFAs become
accept states in the union.

(Right branch) Concatenation
switches all of the first NFA's accept
states non-accepting, then connects
them to the second NFA's start state
with an ϵ-edge.

A second concatenation follows.

Star (Kleen Closure) introduces a
new Start state which is also an
Accept state. This is connected to
the sub-NFA's start state with an ϵ-
edge. Finally, all Accept states are
connected to the original Start state
with an ϵ-edge.

Star

Star

ϵ

27

Parse Trees are Handy
▶ Parse Tree shows a graphical structure for the Regex
▶ Makes the order of what to convert when more obvious
▶ Parse Trees or Abstract Syntax Trees will be handy

elsewhere in the course
But where to parse trees come from?
▶ Construct them explicitly using construction functions like

Concat(Star(Char(a)), Char(b))

Useful in beginner projects like one we are cooking for you now
▶ Process the Regex language to construct the tree, more

difficult as need to establish the allowable syntax, semantics of
your Regex language, parse them, etc. Regexs are often used
in language processing. . .

But if I’m building a Regex language processor and need a Regex
processor to do it, aren’t I stuck?
▶ This is the same problem as writing a C compiler in the C

language: the first C compiler was written in something else. 28

Conversion from NFA to DFA

▶ Can work with NFA’s to do Regex matching but this requires
a more complex matching routine that supports search

▶ Likely upcoming project: Regex to NFA convesion + NFA
matching routine - “good enough”

▶ In many cases it is worthwhile to convert the NFA to a DFA
for more efficient matching

▶ There is a “standard” way to convert NFAs to DFAs along
with slightly optimized “lazy” procedure; will discuss both

29

Standard NFA to DFA Conversion
Standard / “Dumb” Conversion
of NFA to a DFA proceeds in
these steps

1. Create one state in the DFA
for each element of the
Power Set of NFA states
(Subset Construction)

2. DFA Starts at the state
ϵ-Closure of NFA’s start
state

3. DFA Accept states are any
that contain a DFA end
state

4. DFA transitions are the
ϵ-closure of transitions
between NFA states

NFA “N4” to Convert
Regex: ((ba*[ab]a)|a)*

S1

S2 S3

b

ϵ
a

a,b

a

1. Alphabet: {a, b}
2. States: {S1, S2, S3}
3. Start: S1
4. Accept: {S2}
5. Transitions:
{(S1, ϵ, S3), (S1, b, S2), (S2, a, S2),
(S2, a, S3), (S2, b, S3), (S3, a, S1)}

30

NFA to DFA: States via Power Set
▶ The Power Set of a set is the set of all possible subsets
▶ Has 2n elements in it
▶ Initial DFA states are labeled with power set of NFA states

NFA “N4” to Convert

S1

S2 S3

b

ϵ
a

a,b

a

States(N4) = {S1, S2, S3}
States(D4) = Pow(States(N4))

= {∅, {S1}, {S2}, {S3},
{S1, S2}, {S1, S3},
{S2, S3}, {S1, S2, S3}}

D4 States: Power Set of N4 States

T∅ = ∅ T1 = {S1} T2 = {S2} T12 = {S1, S2}

T3 = {S3} T13 = {S1, S3} T23 = {S2, S3} T123 = {S1, S2, S3}

31

NFA to DFA: Epsilon-Closure of a Transition
▶ The ϵ-Closure of a state Sx is the set of states that can be

reached from Sx using only ϵ-transitions including Sx itself
▶ ϵ-Closure of a set of states is the set which can be reached via

only ϵ-edges from any of them
▶ An important concept to complete DFA to NFA conversion
▶ In N4, the only significant ϵ-Closure is for S1 which can

transition to S3 on an ϵ-edge
NFA N4

S1

S2 S3

b

ϵ
a

a,b

a

Epsilon Closure Examples

ϵclos(S1) ={S1, S3}
ϵclos(S2) ={S2}
ϵclos(S3) ={S3}

ϵclos({S1, S2}) ={S1, S2, S3}
ϵclos({S1, S3}) ={S1, S3}

ϵclos({S1, S2, S3}) ={S1, S2, S3}

32

NFA to DFA: Initial and Final States
▶ DFA Initial State: state labeled as ϵ-Closure of NFA start state
▶ DFA Accept States: any with label containing NFA accept

NFA “N4” to Convert

S1

S2 S3

b

ϵ
a

a,b

a

Start(N4) =S1
Start(D4) =ϵclos(S1)

={S1, S3} = T13

Accept(N4) ={S1}
Accept(D4) ={T1, T12, T13, T123}

D4 Initial and Final States Assigned

T∅ T1 T2 T12

T3 T13 T23 T123

33

NFA to DFA: Transitions in DFA
To determine the transition for DFA D’s state Tz = {Si, Sj , ...} for
alphabet letter x

▶ Initialize an empty destination set: dest← {}
▶ Consider Si which is associated with Tz

▶ In the NFA N , find all states Rx connected to Si via an
x-edge, e.g. all states of the form (Si, x, Rx)

▶ Let this set be R

▶ Add the epsilon closure of R to dest; dest← dest ∪ ϵclos(R)
▶ Then consider Sj associated with Tz and do the same
▶ Quit when through with all of Si, Sj , . . .

▶ dest is now a set of states like {S1, S5, S7, S8}
▶ Add the edge (Tz, x, T1578) to the transitions for D

▶ If dest is empty, add the edge (Tz, x, T∅)
Repeat this process for every state / alphabet pair in D to
complete the transitions.
For all x in alphabet, add edges (T∅, x, T∅) e.g. “garbage state”

34

NFA to DFA: Transitions Example 1 / 3
NFA4 being Converted

S1

S2 S3

b

ϵ
a

a,b

a

▶ S1 has no a-edge in NFA4, T1 to
T0 in DFA4

▶ S2 transitions to either S2 or S3
on an a-edge: dest = {S2, S3} so
(T2, a, T23) in DFA4

▶ T12 for alphabet letters is
▶ a: ∅ for S1, {S2, S3} for S2; so

dest = {S2, S3}
▶ b: S2 for S1, S3 for S2, so

dest = {S2, S3}

DFA4 Adding Transitions

T∅ T1 T2 T12

T3 T13 T23 T123

a b

T∅ T1 T2 T12

T3 T13 T23 T123

a b

ab

T∅ T1 T2 T12

T3 T13 T23 T123

a b

ab

a,b

35

Exercise NFA to DFA: Transitions Example 2 / 3
NFA4 being Converted

S1

S2 S3

b

ϵ
a

a,b

a

Determine where the following
transitions should be added to DFA4
states:

1. (T3, a, ??)
2. (T3, b, ??)
3. (T13, a, ??)
4. (T13, b, ??)

Explain why how the destination was
determined in each case

DFA4 Adding Transitions

T∅ T1 T2 T12

T3 T13 T23 T123

a b

ab

a,b

36

Solution: NFA to DFA: Transitions Example 2 / 3
NFA4 being Converted

S1

S2 S3

b

ϵ
a

a,b

a

▶ T3, a: S3 a-edge to S1 PLUS an
ϵ-edge back to S3; so
dest = {S1, S3}

▶ T3, b: S3 has no b-edge dest = ∅
▶ T13, a: No a-edge from S1,

(S3, a, S1) with
ϵclos(S1) = {S1, S3} = dest

▶ T13, b: (S1, b, S2), no S3 b-edge,
dest = {S2}

DFA4 Adding Transitions

T∅ T1 T2 T12

T3 T13 T23 T123

a b

ab

a,b

a

b

T∅ T1 T2 T12

T3 T13 T23 T123

a b

ab

a,b

a

b

a

b

37

NFA to DFA: Transitions Example 3 / 3
NFA4 being Converted

S1

S2 S3

b

ϵ
a

a,b

a

▶ Similar reasoning for T23, T123
▶ Loop on T∅ for all alphabet chars;

represents failure from DFA not
having a valid transition (e.g.
“garbage state”)

DFA4 Adding Transitions

T∅ T1 T2 T12

T3 T13 T23 T123

a b

ab

a,b

a

b

a

b

a

b

T∅ T1 T2 T12

T3 T13 T23 T123

a b

ab

a,b

a

b

a

b
a

b

a

b

T∅ T1 T2 T12

T3 T13 T23 T123

a b

ab

a,b

a

b

a

b
a

b

a

b

a,b

38

NFA to DFA: State Elimination
▶ Some states are unreachable from the start state for any

possible input so do not have any practical effect
▶ Example: T1, T12 have no incoming edges
▶ Can be detected via directed graph traversal from start state
▶ Eliminate unreachable “dead states” and their transitions

Original Complete DFA4

T∅ T1 T2 T12

T3 T13 T23 T123

a b

ab

a,b

a

b

a

b
a

b

a

b

a,b

Dead States Eliminated

T∅ T2

T3 T13 T23 T123

ab

a

b

a

b

a

b

a

b

a,b

39

Exercise NFA to DFA: Pseudocode for Transitions

▶ Loose Pythonic pseudocode for the “standard” DFA algorithm
is given below

▶ What is the big-O complexity (approximately) of each loop?
▶ Of the code overall?

1 for every T in DFA.states: # O(??)
2 for every x in DFA.alphabet: # O(??)
3 dest = set()
4 for every S in T: # O(??)
5 R = NFA.trans[S].get(x,set())
6 dest.union(eclosure(R)) # O(??)
7 DFA.trans[T][x] = DFA.state_names[dest]
8 eliminate_dead_states(DFA)

40

Answers NFA to DFA: Pseudocode for Transitions

▶ Loose Pythonic pseudocode for the “standard” DFA algorithm
is given below

▶ Note its complexity is high in this “standard” approach
1 for every T in DFA.states: # 2^n states
2 for every x in DFA.alphabet: # len(DFA.alphabet)
3 dest = set()
4 for every S in T: # could be n states
5 R = NFA.trans[S].get(x,set())
6 dest.union(eclosure(R)) # union is not O(1)
7 DFA.trans[T][x] = DFA.state_names[dest]
8 eliminate_dead_states(DFA)

▶ Algorithm works but has HIGH complexity:
at least O(2n ∗ len(alphabet))

▶ Leads to alternative “on demand” algorithm. . .

41

NFA to DFA: Algorithmic Improvements

▶ Rather than immediately add all possible DFA states, add
them only “as needed” or “as discovered” or “on demand”

▶ Avoids the immediate cost of adding 2n states
▶ Won’t add dead states as no edges connect them
▶ Generally more practical than the “standard” method

42

NFA to DFA: On Demand Algorithm 1 / 2
▶ Track two collections of states

▶ Completed (black)
▶ Todo (red)

▶ Start by adding only the start
state as a Todo state

▶ Each iteration, select one Active
(blue) state from the Todo
states

▶ Determine Active state’s
transitions for all alphabet
letters

▶ Any transition to a state not
already seen adds to Todo
▶ T13: b goes to T2 which is

added to Todo
▶ T2: transitions add T23 and

T3 to Todo

T13

T13 T2

a

b

T13 T2 T23

T3

a

b a

b

43

Exercise NFA to DFA: On Demand Algorithm 2 / 2

T13

T13 T2

a

b

T13 T2 T23

T3

a

b a

b

▶ Complete the execution of the
on-demand algorithm adding
states transitions for a Todo
state and adding states as they
are “discovered”

▶ Start with T23 as the Active
state

44

Answers NFA to DFA: On Demand Algorithm 2 / 2
1. T23 transitions “discover” T123

T13 T2 T23

T3 T123

a

b a

b ab

2. T3 transitions “discover T∅

T13 T2 T23

T3 T123
T∅

a

b a

b ab
a

b

3. T123 transitions added

T13 T2 T23

T3 T123
T∅

a

b a

b ab
a

b a

b

4. T∅ self-loops on all

T13 T2 T23

T3 T123
T∅

a

b a

b ab
a

b a

b

a,b

45

NFA to DFA: On Demand Final

▶ While slightly trickier to
implement, the On-Demand
method is much more
practical

▶ Resulting DFA shown nearby
is equivalent to that
constructed via Standard
method after dead-state
elimination

▶ You may implement the
On-Demand conversion
procedure in a future project

T13 T2 T23

T3 T123
T∅

a

b a

b ab
a

b a

b

a,b

46

Conclusions

▶ Finite State Machines come in several flavors (DFA / NFA)
but that have equivalent power

▶ The are related to regular expressions and often used to
implement efficient Regex matching via the translation /
compilation process:

Regex→ NFA→ DFA

▶ Learning this process teaches techniques useful in other
language processing such as parse trees

▶ Regexs / FSMs have limits to their power to recognize (e.g.
matching parens); will need more complex machines to handle
these cases

47

