CMSC330: Finite State Machines

Chris Kauffman

Last Updated:
Thu Sep 21 09:28:00 AM EDT 2023

Logistics

Assignments

- Project 2 "RNA Transcription" Due 19-Sep
- Project 3 is cooking

Goals

- Recap of Regexs
- Finite State Machines
- Determinism vs Non-Determinism
- Regex to NFA
- NFA to DFA

Reading

Introduction to the Theory of
Computation by Michael Sipser

- Chapter 1 covers theory associated with Finite State Machines and their relation to Regular Expresssions
- For the theoretically inclined, treatment is much tighter w/ proofs than our in-class work

Prof Bakalian's Notes on FSM

- A good summary of the topics we'll cover
- Linked on course schedule

Automata Theory

- Likely you've studied Boolean Logic in a previous class
- Allows the "computation" of certain outcomes based on inputs but has limits in power, does not amount to what a "computer" can do
- Example: cannot recognize Regular Expressions with Boolean Logic as Regexes can recognize infinite sets of strings
- Automata Theory is the branch of Math / CS that studies what (theoretical) machines with different properties can do
- By introducing notions of state (and time) one can build progressively more powerful machines

Levels of Computational Power

- A full course on Automata Theory would study each level, comparing, contrasting, formalizing
- Wouldn't leave much time for other fun things like Python, OCaml, Racket...
- In CMSC 330, will study Finite State Machines (FSM) also known as Finite Automata (FA) as an example of one level of power that is useful in language processing and is connected to Regular Expressions

Even-Bs: A Leading Example

Let Even-Bs be the set of all strings composed of a and b with at least 2 b 's and an even number of b's.

- Example members of Even-Bs are bb, abb, aaababaa, abbabb, abba, babaaa, ...
- Regex matching strings in Even-Bs: (a*ba*ba*)+
- Deterministic Finite Automata (DFA) recognizing Even-Bs

DFA Diagram Notation

- DFAs are mathematical graphs comprised of vertices (circles) and directed edges (arrows between circles)
- Each circle is a state; there are a finite number of them
- Each edge / transition is labeled with at least one item from the input alphabet like a or b
- There is one start state $S 1$ in this case; note the arrow to it
- There are one or more accept states which are drawn with 2 circles like $S 3$

Exercise: DFA Example Recognition / Rejection

v	v	v
input: abbabb	input: bbaaba	input: ababbba
state: S1 a-> S1	state: S1 b-> S2	???
v	V	???
input: abbabb	input: bbaaba	
state: S1 b-> S2	state: S2 b-> S3	omplete the state transitions
v	v	
input: abbabb	input: bbaaba	
state: S2 b-> S3	state: S3 a-> S3	
v	v	
input: abbabb	input: bbaaba	
state: S3 a-> S3	state: S3 a-> S3	
v	v	
input: abbabb	input: bbaaba	
state: S3 b-> S4	state: S3 b-> S4	
v	v	
input: abbabb	input: bbaaba	
state: S4 b-> S3	state: S4 a-> S4	
v	v	
input: abbabb	input: bbaaba	
state: S3 ACCEPT	state: S4 REJECT	

Answers: DFA Example Recognition / Rejection

v	v	v
input: abbabb	input: bbaaba	input: ababbba
state: S1 a-> S1	state: S1 b-> S2	state: S1 a-> S1
v	v	v
input: abbabb	input: bbaaba	input: ababbba
state: S1 b-> S2	state: S2 b-> S3	state: S1 b-> S2
v	v	v
input: abbabb	input: bbaaba	input: ababbba
state: S2 b-> S3	state: S3 a-> S3	state: S2 a-> S2
input: abbabb	input: bbaaba	input: ababbba
state: S3 a-> S3	state: S3 a-> S3	state: S2 b-> S3
v	v	v
input: abbabb	input: bbaaba	input: ababbba
state: S3 b-> S4	state: S3 b-> S4	state: S3 b-> S4
v	v	v
input: abbabb	input: bbaaba	input: ababbba
state: S4 b-> S3	state: S4 a-> S4	state: S4 b-> S3
v	v	v
input: abbabb	input: bbaaba	input: ababbba
state: S3 ACCEPT	state: S4 REJECT	state: S3 a-> S3

DFAs are Not Unique

Even-Bs DFA \#2

- Both these DFAs recognize the set Even-Bs but are shaped differently
- DFA Minimization finds a DFA which accepts the same input set but has a minimal number of states (subject to caveats)
- Regular Expressions are not unique either:
Even-Bs Regex 1: (a*ba*ba*)+ Even-Bs Regex 2: (a*ba*b)+a*

Finite State Machine Formalisms

Formally, a FSM is a 5-tuple (e.g. 5 parts, order matters)

Description		Sym	Even-Bs DFA \#1
1	Alphabet: set of allowable characters	Σ	$\{a, b\}$
2	Set of States in FSM	S	$S=\{S 1, S 2, S 3, S 4\}$
3	Starting state of the FSM	s_{0}	S1
4	Set of Final / Accept States	F	\{S3\}
5	Set of transitions (labeled edges) ${ }^{1}$	δ	$\begin{aligned} & \{(\mathrm{S} 1, \mathrm{a}, \mathrm{~S} 1),(\mathrm{S} 1, \mathrm{~b}, \mathrm{~S} 2), \\ & (\mathrm{S} 2, \mathrm{a} 2),(\mathrm{S} 2, \mathrm{~b}, \mathrm{~S} 3), \\ & (\mathrm{S} 3, \mathrm{a}, \mathrm{~S} 3),(\mathrm{S} 3, \mathrm{~b}, \mathrm{~S} 4), \\ & (\mathrm{S} 4, \mathrm{a}, \mathrm{~S} 4),(\mathrm{S} 4, \mathrm{~b}, \mathrm{~S} 3)\} \end{aligned}$

[^0]
Exercise: DFA Practice

1. Show the formal 5-tuple of parts for this DFA
2. What set of strings does it accept?
3. Find a regular expression that matches that set
4. What set of strings does this Regex match? Regex: [ab]*aab[ab]*
5. Design a DFA that accepts the same set of strings

Answers: DFA Practice

Ends-C DFA

1. Show the formal 5-tuple of parts for this DFA
2. Alphabet: $\{a, b, c\}$
3. States: \{S1,S2,S3\}
4. Start: S1
5. Accept: \{S2\}
6. Transitions:
\{(S1,a,S1), (S1,b,S1), (S1, c, S2), (S2, a, S3) , (S2,b,S3) , (S2, c, S2), (S3, a ,S3), (S3,b,S3), (S3, c, S2)\}
7. What set of strings does it accept? Strings of a, b, c the end with c
8. Find a regular expression that matches that set
Regex: [abc]*c\$
Note use of \$ to denote end of input

Ends-C DFA with Alt Notation
4. What set of strings does this Regex match?
Regex: [ab]*aab[ab]*
Strings of a, b that contain the substring aab
5. Design a DFA that accepts the same set of strings

Has-AAB DFA
Adapted from Sipser Figure 1.13

DFAs in Code as Data Structures

```
# even_Bs_dfa.py:
even_Bs_dfa = {
    "alphabet":{"a","b"},
    "nstates":4,
    "start":1,
    "accept":{3},
    "trans":[{},
        {"a":1,"b":2},
        {"a":2,"b":3},
        {"a":3,"b":4},
        {"a":4,"b":3}],
}
def dfa_match(dfa,instr):
    state = dfa["start"]
    trans = dfa["trans"]
    for i in instr:
        if not i in dfa["alphabet"]:
                return "Error"
            state = trans[state][i]
    if state in dfa["accept"]:
        return "Accept!"
    else:
    return "Reject"
```

- Encode the 5 parts of the DFA in some sort of data structure
- Python's built-in Lists, Dictionaries, Sets make this pleasant
- dfa_match(dfa,instr) will return Accept / Reject string using DFAs encoded as the example above
- The general goal of compiling a regular expression is to produce this kind of data structure
- Study the data structure and explain its parts

```
DFAs as Code
```

```
// even_Bs_dfa.c:
```

// even_Bs_dfa.c:
int even_Bs_dfa(char *input){
int even_Bs_dfa(char *input){
int pos=-1;
int pos=-1;
S1:
S1:
pos++;
pos++;
switch(input[pos]){
switch(input[pos]){
case 'a': goto S1;
case 'a': goto S1;
case 'b': goto S2;
case 'b': goto S2;
case '\0': goto REJECT;
case '\0': goto REJECT;
default: goto ERROR;
default: goto ERROR;
}
}
S2:
S2:
pos++;
pos++;
switch(input[pos]){
switch(input[pos]){
case 'a': goto S2;
case 'a': goto S2;
case 'b': goto S3;
case 'b': goto S3;
case '\0': goto REJECT;
case '\0': goto REJECT;
default: goto ERROR;
default: goto ERROR;
}
}
S3:
S3:
pos++;
pos++;
switch(input[pos]){
switch(input[pos]){
case 'a': goto S3;
case 'a': goto S3;
case 'b': goto S4;
case 'b': goto S4;
case '\0': goto ACCEPT;
case '\0': goto ACCEPT;
default: goto ERROR;
default: goto ERROR;
}
}
S4:
S4:
pos++;
pos++;
switch(input[pos]){

```
    switch(input[pos]){
```

- A common output option for parsing tools like Lex and Yacc is to encode state machines as positions in code
- Instruction Pointer is "state"
- Tools process a Regex or more complex language Grammar then generates C code that represents the state machine
- Generated C code is nigh impenetrable BUT compiles to much faster recognition routines than alternatives
- With all those goto's, you know. . . Here be Dragons

Formal Regular Expressions

- Introduced Regexs in code somewhat informally as a pattern matching device
- Formally, Regular Expressions are

1. ϵ : the Empty String (zero-length) (Greek Letter "epsilon")
2. \emptyset : the empty set of no regexs
3. Single item: like a from an alphabet $\Sigma=a, b$
4. $R_{1} R_{2}$: concatenation of two regexs
5. $R_{1} \mid R_{2}$: union / alternation of two regexs
6. R_{1}^{*} : zero-or-more of a regex, its Kleene Closure ${ }^{2}$

- These 6 parts are minimal, allow construction of all the regex convenience mechanisms we've seen so far, and limit the cases of in formal proofs
Ex: Shorthand: [ab] + Formal: $(a \mid b)(a \mid b)^{*}$
Ex: Shorthand: $\mathrm{a} ? \mathrm{~b}+\mathrm{aa}$ Formal: $(a \mid \epsilon) b b^{*} a a$

[^1]
Equivalence of FSM and Regular Expressions

Definition: A language is Regular if some Finite State Machine accepts it. The FSM may be either Deterministic or Non-deterministic.

Using a series of proofs one can show the following:

1. A language is Regular if and only if some Regular Expression describes it; shown by giving a procedure to convert a Regular Expression to a Non-deterministic Finite Automata (NFA)
2. Regular Expressions are closed under the 3 regular operations of concatenation, union, and star (Kleene closure) e.g. all regexs that can exist can be built from simpler regexs with these ops
3. Every NFA has an equivalent DFA; procedures exist to convert NFAs to DFAs that accept the same language; we'll study this Conclusion: Regular Expressions and Finite State Machines are equivalent in power, allow recognition of identical sets

If you want to see those proofs, grab a copy of Sipser's Introduction to the Theory of Computation

Nonregular Languages and the Limits Regexes/FSMs

- Before moving forward, note that Regexs / FSMs hit practical limits in power quickly and in cases we'd want to overcome
- Example: Let Equal-ABs be the set of all strings start some number n of a characters and are followed immediately by $n \mathrm{~b}$ characters.
- Equal-ABs $=\left\{a^{n} b^{n} \mid n>0\right\}$
- Equal-ABs = \{ab, aabb, aaabbb, aaaabbbb, ...\}
- Fool's Errands:
- Construct a DFA to accept Equal-ABs
- Write a Regex matching Equal-ABs
- No such DFA or Regex Exists
- Why do we care? Well, a similar set is Balanced-Paren, the set of all strings that have properly balanced parentheses
- Balanced-Paren $=\{(),(()),(())), \ldots\}$
- One needs a more powerful machine than FSMs / Regexs to properly recognize Equal-ABs and Balanced-Parens which is crucial for processing programming languages

Flow of "Compiling" Regexs

Given a Regular Expression R, the notion of "Compiling" it usual boils down to...

1. Use a procedure to convert it to a Non-deterministic Finite Automata N
2. Use N for matching input directly OR
3. Use a procedure to convert ${ }^{3} N$ to a Deterministic Finite Automata D
4. Then match the input with D

Will examine each items and overview the procedures mentioned BUT an upcoming assignment will have you code some of these procedures to a get a feel for them

[^2]
Non-Deterministic Finite Automata: Differences 1

- First difference from DFAs: relax constraint of "every state has one edge for every member of the alphabet"
- Input chars may appear on multiple edges: choices
- Some states may not transition from every input
- Input is accepted if some path exists for the input to an accept state for the entire input
- When there are two transitions with a on it, try both: e.g. search for an accepting path
Consider the Regex $(\mathrm{a} \mid \mathrm{b}) * \mathrm{~b}(\mathrm{a} \mid \mathrm{b})(\mathrm{a} \mid \mathrm{b})$: strings of a, b with b in the third to last position; name that set of strings B-Third-Last.

NFA Recognizing B-Third-Last: [ab] *b [ab] \{2\}

NFA Example Recognition of B-Third-Last: Search Tree

Why DFA vs NFA?

- DFAs involve no choices as they check input, computational benefits, may have a large number of states, more difficult to convert Regex directly to a DFA
- NFAs allow choices which induces the need to search, computationally more cumbersome, easier to convert Regexs to NFAs, can be converted to DFAs

NFA Accepting B-Third-Last

DFA Accepting B-Third-Last

NFA Differences 2: Epsilon Transitions

- Recall ϵ is the empty string, a Regex itself and a sort of "special" character
- Second difference of NFAs from DFAs: allow epsilon transitions (ϵ-transitions) between states along ϵ-edges
- Consumes no input
- Change state without affecting input position
- Example: Consider the Regex $\mathrm{a}+\mathrm{b}+\mathrm{a}$ (formal $a a^{*} b b^{*} a$)
- Here are two NFAs which accept the same Regex

With ϵ-Transitions

No ϵ-Transitions

NFA Recognition with Epsilon Transitions


```
NFA which accepts \(a+b+a\) using \(\epsilon\)-transitions
- In this simple example, only choices are REJECT or take the \(\epsilon\)-transitions
- Taking \(\epsilon\)-transitions change states without affecting input
- In more complex NFAs, a state may have valid input character transitions and \(\epsilon\)-transitions; requires searching all possible paths for an ACCEPT sequence
```

```
V
```

input: aaabba

```
input: aaabba
state: S1 a-> S2
state: S1 a-> S2
input: aaabba
input: aaabba
state: S2 a-> REJECT
state: S2 a-> REJECT
    S2 eps-> S1
    S2 eps-> S1
    V
    V
input: aaabba
input: aaabba
state: S1 a-> S2
state: S1 a-> S2
    V
    V
input: aaabba
input: aaabba
state: S2 a-> REJECT
state: S2 a-> REJECT
state: S2 eps-> S1
state: S2 eps-> S1
    V
    V
input: aaabba
input: aaabba
state: S1 a-> S2
state: S1 a-> S2
input: aaabba
input: aaabba
state: S2 eps-> S3
state: S2 eps-> S3
input: aaabba
input: aaabba
state: S3 b-> S4
state: S3 b-> S4
    V
    V
input: aaabba
input: aaabba
state: S4 b-> REJECT
state: S4 b-> REJECT
state: S4 eps-> S3
state: S4 eps-> S3
input: aaabba
input: aaabba
state: S3 b-> S4
state: S3 b-> S4
        V
        V
input: aaabba input: aaabba
state: S4 a-> S5 state: S5 ACCEPT
```


Why Allow ϵ-Transitions?

- ϵ-transitions don't add any additional power to NFAs BUT. . .
- They make it much easier to convert Regexs to NFAs
- Recall the 3 operators that construct a larger Regex from a smaller ones
- $R_{1} R_{2}$: Concatenation
- $R_{1} \mid R_{2}$: Union
- R_{1}^{*} : Star (Kleene Closure)
- Each uses ϵ-transitions during Regex to NFA conversion

Regex to NFA Conversion: Parse Trees

- Idea behind conversion procedure is easier to understand with a parse tree for a regular expression
- Is implied by the formal definition of a Regular Expression but enlightening to look examples explicitly
- Shown are both Drawings and a Code-like constructions

Principls of Regex to NFA Conversions

- Each of the constructs comprising Regular Expressions has an NFA equivalent
- Typically work bottom up on the the Regex parse tree converting leaves to small NFAs, then combining those on the way up through interior nodes
- Recursion helps a lot with this
- Convert all child trees to NFAs recursively, combine/alter the child NFAs according to the interior node's operation
- Operations like Union, Concatenation, and Star may introduce additional states and use ϵ-transitions to "glue" smaller NFAs together
- When the Root of the parse tree is finished, have a single NFA which will Accept all strings the Regex matches
- This process is the basis for the constructive proof that Regexs and FSMs are equivalent

Example Regex to NFA Conversion

A Sample Regex to NFA Conversion
UMD CMSC330 - Kauffman
The parse tree for following formal
 regex is shown nearby.
($(a \mid b) a a)$ *
In a program, it would likely be written with some shorthand conventions like this:

$$
([a b] a a) *
$$

This is somewhat involved and is shown in a separate linked handout which looks like the nearby miniaturized version. It outlines the process on a specific example describing how
Char (x), Union(x, y),
Concat (x, y), Star(x) are converted to NFAs. The handout is near to where this slide is located.

Parse Trees are Handy

- Parse Tree shows a graphical structure for the Regex
- Makes the order of what to convert when more obvious
- Parse Trees or Abstract Syntax Trees will be handy elsewhere in the course

But where to parse trees come from?

- Construct them explicitly using construction functions like Concat(Star(Char(a)), Char(b))
Useful in beginner projects like one we are cooking for you now
- Process the Regex language to construct the tree, more difficult as need to establish the allowable syntax, semantics of your Regex language, parse them, etc. Regexs are often used in language processing...
But if I'm building a Regex language processor and need a Regex processor to do it, aren't I stuck?
- This is the same problem as writing a C compiler in the C language: the first C compiler was written in something else.

Conversion from NFA to DFA

- Can work with NFA's to do Regex matching but this requires a more complex matching routine that supports search
- Likely upcoming project: Regex to NFA convesion + NFA matching routine - "good enough"
- In many cases it is worthwhile to convert the NFA to a DFA for more efficient matching
- There is a "standard" way to convert NFAs to DFAs along with slightly optimized "lazy" procedure; will discuss both

Standard NFA to DFA Conversion

Standard / "Dumb" Conversion of NFA to a DFA proceeds in these steps

1. Create one state in the DFA for each element of the Power Set of NFA states (Subset Construction)
2. DFA Starts at the state ϵ-Closure of NFA's start state
3. DFA Accept states are any that contain a DFA end state
4. DFA transitions are the ϵ-closure of transitions between NFA states

NFA "N4" to Convert
Regex: ((ba*[ab]a)|a)*

1. Alphabet: $\{a, b\}$
2. States: $\{S 1, S 2, S 3\}$
3. Start: $S 1$
4. Accept: $\{S 2\}$
5. Transitions:
$\{(S 1, \epsilon, S 3),(S 1, b, S 2),(S 2, a, S 2)$,
$(S 2, a, S 3),(S 2, b, S 3),(S 3, a, S 1)\}$

NFA to DFA: States via Power Set

- The Power Set of a set is the set of all possible subsets
- Has 2^{n} elements in it
- Initial DFA states are labeled with power set of NFA states

NFA "N4" to Convert

$$
\begin{aligned}
\operatorname{States}(N 4)= & \{S 1, S 2, S 3\} \\
\operatorname{States}(D 4)= & \operatorname{Pow}(S t a t e s(N 4)) \\
= & \{\emptyset,\{S 1\},\{S 2\},\{S 3\}, \\
& \{S 1, S 2\},\{S 1, S 3\}, \\
& \{S 2, S 3\},\{S 1, S 2, S 3\}\}
\end{aligned}
$$

D4 States: Power Set of N4 States

$$
\begin{array}{cccc}
\hline T_{\emptyset}=\emptyset & T_{1}=\{S 1\} & T_{2}=\{S 2\} & T_{12}=\{S 1, S 2\} \\
\hline T_{3}=\{S 3\} & T_{13}=\{S 1, S 3\} & T_{23}=\{S 2, S 3\} & T_{123}=\{S 1, S 2, S 3\} \\
\hline
\end{array}
$$

NFA to DFA: Epsilon-Closure of a Transition

- The ϵ-Closure of a state S_{x} is the set of states that can be reached from S_{x} using only ϵ-transitions including S_{x} itself
- ϵ-Closure of a set of states is the set which can be reached via only ϵ-edges from any of them
- An important concept to complete DFA to NFA conversion
- In N4, the only significant ϵ-Closure is for $S 1$ which can transition to $S 3$ on an ϵ-edge

NFA N4

Epsilon Closure Examples

$$
\begin{aligned}
\epsilon_{\text {clos }}(S 1) & =\{S 1, S 3\} \\
\epsilon_{\text {clos }}(S 2) & =\{S 2\} \\
\epsilon_{\text {clos }}(S 3) & =\{S 3\} \\
\epsilon_{\text {clos }}(\{S 1, S 2\}) & =\{S 1, S 2, S 3\} \\
\epsilon_{\text {clos }}(\{S 1, S 3\}) & =\{S 1, S 3\} \\
\epsilon_{\text {clos }}(\{S 1, S 2, S 3\}) & =\{S 1, S 2, S 3\}
\end{aligned}
$$

NFA to DFA: Initial and Final States

- DFA Initial State: state labeled as ϵ-Closure of NFA start state
- DFA Accept States: any with label containing NFA accept NFA "N4" to Convert

$$
\begin{aligned}
\operatorname{Start}(N 4) & =S 1 \\
\operatorname{Start}(D 4) & =\epsilon_{\text {clos }}(S 1) \\
& =\{S 1, S 3\}=T_{13} \\
\operatorname{Accept}(N 4) & =\{S 1\} \\
\operatorname{Accept}(D 4) & =\left\{T_{1}, T_{12}, T_{13}, T_{123}\right\}
\end{aligned}
$$

D4 Initial and Final States Assigned

NFA to DFA: Transitions in DFA

To determine the transition for DFA D 's state $T_{z}=\left\{S_{i}, S_{j}, \ldots\right\}$ for alphabet letter x

- Initialize an empty destination set: dest $\leftarrow\}$
- Consider S_{i} which is associated with T_{z}
- In the NFA N, find all states R_{x} connected to S_{i} via an x-edge, e.g. all states of the form $\left(S_{i}, x, R_{x}\right)$
- Let this set be R
- Add the epsilon closure of R to dest; dest $\leftarrow \operatorname{dest} \cup \epsilon_{\text {clos }}(R)$
- Then consider S_{j} associated with T_{z} and do the same
- Quit when through with all of S_{i}, S_{j}, \ldots
- dest is now a set of states like $\{S 1, S 5, S 7, S 8\}$
- Add the edge (T_{z}, x, T_{1578}) to the transitions for D
- If dest is empty, add the edge $\left(T_{z}, x, T_{\emptyset}\right)$

Repeat this process for every state / alphabet pair in D to complete the transitions.
For all x in alphabet, add edges $\left(T_{\emptyset}, x, T_{\emptyset}\right)$ e.g. "garbage state"

NFA to DFA: Transitions Example 1 / 3

NFA4 being Converted

- $S 1$ has no a-edge in NFA4, T_{1} to T_{0} in DFA4
- $S 2$ transitions to either $S 2$ or $S 3$ on an a-edge: dest $=\{S 2, S 3\}$ so $\left(T_{2}, a, T_{23}\right)$ in DFA4
- T_{12} for alphabet letters is
- a : \emptyset for $S 1,\{S 2, S 3\}$ for $S 2$; so dest $=\{S 2, S 3\}$
- b: $S 2$ for $S 1, S 3$ for $S 2$, so dest $=\{S 2, S 3\}$

DFA4 Adding Transitions

Exercise NFA to DFA: Transitions Example 2 / 3

NFA4 being Converted

Determine where the following transitions should be added to DFA4 states:

1. $(T 3, a, ? ?)$
2. $(T 3, b, ? ?)$
3. $\left(T_{13}, a, ? ?\right)$
4. $\left(T_{13}, b, ? ?\right)$

Explain why how the destination was determined in each case

Solution: NFA to DFA: Transitions Example 2 / 3

NFA4 being Converted

- T_{3}, a : $S 3$ a-edge to $S 1$ PLUS an ϵ-edge back to $S 3$; so dest $=\{S 1, S 3\}$
- $T_{3}, b: S 3$ has no b-edge dest $=\emptyset$
- T_{13}, a : No a-edge from S1, $(S 3, a, S 1)$ with $\epsilon_{\text {clos }}(S 1)=\{S 1, S 3\}=$ dest
- $T_{13}, b:(S 1, b, S 2)$, no $S 3$ b-edge, dest $=\{S 2\}$

DFA4 Adding Transitions

NFA to DFA: Transitions Example 3 / 3
NFA4 being Converted

- Similar reasoning for T_{23}, T_{123}
- Loop on T_{\emptyset} for all alphabet chars; represents failure from DFA not having a valid transition (e.g.

DFA4 Adding Transitions
 "garbage state")

NFA to DFA: State Elimination

- Some states are unreachable from the start state for any possible input so do not have any practical effect
- Example: T_{1}, T_{12} have no incoming edges
- Can be detected via directed graph traversal from start state
- Eliminate unreachable "dead states" and their transitions

Original Complete DFA4

Dead States Eliminated

Exercise NFA to DFA: Pseudocode for Transitions

- Loose Pythonic pseudocode for the "standard" DFA algorithm is given below
- What is the big-O complexity (approximately) of each loop?
- Of the code overall?

```
1 for every T in DFA.states:
2 for every x in DFA.alphabet:
3 dest = set()
4 for every S in T:
5 R = NFA.trans[S].get(x,set())
6 dest.union(eclosure(R)) # O(??)
7 DFA.trans[T][x] = DFA.state_names[dest]
8 eliminate_dead_states(DFA)
```


Answers NFA to DFA: Pseudocode for Transitions

- Loose Pythonic pseudocode for the "standard" DFA algorithm is given below
- Note its complexity is high in this "standard" approach

1 for every T in DFA.states: \# 2^n states
2 for every x in DFA.alphabet:
\# len(DFA.alphabet) dest $=\operatorname{set}()$

```
        for every S in T: # could be n states
```

 \(R=N F A . t r a n s[S] . \operatorname{get}(x, \operatorname{set}())\)
 dest.union(eclosure(R)) \# union is not \(0(1)\)
 DFA.trans[T] [x] = DFA.state_names[dest]
 eliminate_dead_states (DFA)
 - Algorithm works but has HIGH complexity: at least $O\left(2^{n} * \operatorname{len}(\right.$ alphabet $\left.)\right)$
- Leads to alternative "on demand" algorithm...

NFA to DFA: Algorithmic Improvements

- Rather than immediately add all possible DFA states, add them only "as needed" or "as discovered" or "on demand"
- Avoids the immediate cost of adding 2^{n} states
- Won't add dead states as no edges connect them
- Generally more practical than the "standard" method

NFA to DFA: On Demand Algorithm 1 / 2

- Track two collections of states
- Completed (black)
- Todo (red)
- Start by adding only the start state as a Todo state
- Each iteration, select one Active (blue) state from the Todo states
- Determine Active state's transitions for all alphabet letters
- Any transition to a state not already seen adds to Todo
- $T_{13}: b$ goes to T_{2} which is added to Todo
- T_{2} : transitions add T_{23} and T_{3} to Todo

Exercise NFA to DFA: On Demand Algorithm 2 / 2

- Complete the execution of the on-demand algorithm adding states transitions for a Todo state and adding states as they are "discovered"
- Start with T_{23} as the Active state

Answers NFA to DFA: On Demand Algorithm 2 / 2

1. T_{23} transitions "discover" T_{123}

2. T_{123} transitions added

3. T_{3} transitions "discover T_{\emptyset}

4. T_{\emptyset} self-loops on all

NFA to DFA: On Demand Final

- While slightly trickier to implement, the On-Demand method is much more practical
- Resulting DFA shown nearby is equivalent to that constructed via Standard method after dead-state elimination
- You may implement the
 On-Demand conversion procedure in a future project

Conclusions

- Finite State Machines come in several flavors (DFA / NFA) but that have equivalent power
- The are related to regular expressions and often used to implement efficient Regex matching via the translation / compilation process:

$$
\text { Regex } \rightarrow N F A \rightarrow D F A
$$

- Learning this process teaches techniques useful in other language processing such as parse trees
- Regexs / FSMs have limits to their power to recognize (e.g. matching parens); will need more complex machines to handle these cases

[^0]: ${ }^{1}$ The character δ is the lower-case Greek letter delta, often used to represent "change" as in a "change of state"; it's capital version is Δ

[^1]: ${ }^{2}$ Named for Stephen Kleene who studied under Alonzo Church and contributed to the development of Church's Lambda Calculus

[^2]: ${ }^{3}$ There are also procedures to convert DFAs and NFAs into equivalent Regexs. Not so useful in computing practice but useful to prove the equivalence of FSMs and Regexs. They are covered in Sipser's textbook.

