
CMSC330: Regular Expressions

Chris Kauffman

Last Updated:
Mon Sep 11 03:14:41 PM EDT 2023

1

Logistics

Assignments
▶ Lecture Quiz 2 up later, due Tue
▶ Project 1 “Intro Python” Due Sun 10-Sep

Reading
▶ Python re Module: Docs on the Regular Expressions Python

provides
▶ Related Match Object

Goals
▶ Wrap up higher-order function
▶ Regular Expressions and their Uses
▶ Python’s re Module for Regular Expressions

2

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html#re.Match

Regular Expressions Overview

▶ Recognizing and selecting patterns often comes up in
computing situations

▶ A fundamental part of building Programming Language
interpreters and compilers is recognizing the raw text as either
correct or not:

▶ Regular Expressions address these problems; they are a
▶ Mini-language for describing text patterns
▶ Set of tools to detect the patterns described
▶ An underlying theory of what can be recognized efficiently

3

A Motivating Example

From “The Five Essential Phone-Screen Questions” by Steve Yegge
Let’s say you’re on my team, and we have to identify the pages
having probable U.S. phone numbers in them. To simplify the
problem slightly, assume we have 50,000 HTML files in a Unix
directory tree, under a directory called “/website”. We have 2 days
to get a list of file paths to the editorial staff. You need to give me
a list of the .html files in this directory tree that appear to contain
phone numbers in the following two formats:

(xxx)-xxx-xxxx AND xxx-xxx-xxxx.

How would you solve this problem? Keep in mind our team is on a
short (2-day) timeline.
– Steve Yegge

4

https://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions

Solutions
Here are some facts for you to ponder:

▶ Our Contact Reduction team really did have exactly this problem in 2003.
This isn’t a made-up example.

▶ Someone on our team produced the list within an hour, and the list
supported more than just the 2 formats above.

▶ About 25% to 35% of all software development engineer candidates,
independent of experience level, cannot solve this problem, even given the
entire interview hour and lots of hints.

▶ Here’s one of many possible solutions to the problem:

grep -l -R --perl-regexp \
"\b(\(\d{3}\)\s*|\d{3}-)\d{3}-\d{4}\b"

▶ If they say, after hearing the question,
“Um. . . grep?”
then they’re probably OK. . . Heck, if they can tell me where they’d look
to find the syntax [for the regular expression], I’m fine with it.

– Steve Yegge

5

Exercise: The Regex Guessing Game

▶ re_guessing_game.py has a series of “rounds” that
demonstrate various aspects of regular expression syntax

▶ Regexs are applied to some text using Python’s
re.findall(regexp,text) function to (duh) find all
matching text

▶ Will run the code and examine the matches
▶ Brave neighbors will describe the meaning of symbols

6

Answers: The Regex Guessing Game

See re_guessing_game.py and re_guessing_game.txt in
codepack for the code, output, and notes taken during class.

7

Summary of Symbology
Syntax Matches. . .
ab The fixed string ab
a+ One or more of a, as many as possible
a* Zero or more of a, as many as possible
a | b Match a or b
a{2,5} Match 2 to 5 a as in aa, aaa, aaaa, aaaaa
a{2,} Match 2 or more a
a{,5} Match 0 to 5 a
a? Match 0 or 1 a
[0-9] Char range 0 to 9
\d Any digit character 0-9
[a-z] Any lower-case character
[^a-z] Any character EXCEPT lower-case letters (Not a-z)
\w Any word character (letter, digit, underscore _)
. Any single character, any type
\b A boundary (but don’t include it in the match)
\s Whitespace (spaces, tabs, newlines)

8

Some Warnings

Some people, when confronted with a problem, think I
know, I’ll use regular expressions. Now they have two prob-
lems.
– Jamie Zawinski, Netscape Engineer and DNA Lounge
proprietor (source discussion)

▶ Regular Expressions are a mini-language or Domain Specific
Language (DSL) often embedded in tools or full PLs

▶ Regex’s have their own syntax and semantics which vary
between Python, Java, OCaml, command line

▶ Regexs’ text must be compiled to a lower form to be useful,
usually compiled to a finite state machine

▶ Regex’s are NOT a full PL (e.g. can’t compute Fibonacci
with them), will study their limits in power

9

https://en.wikipedia.org/wiki/Jamie_Zawinski
http://regex.info/blog/2006-09-15/247

Python String Forms
▶ Python has several string means to write strings (text data)

and a couple of them are relevant to Regexs
▶ Since Regexs will use Escape Sequences like \w, folks use raw

strings with syntax r"the string" which suspends normal
string interp of backslashes

1 # pystrings.py:
2 def show_strings():
3 dq_string = "This \"is\"\na string"
4 sq_string = 'This "is"\na string'
5
6 d3_string = """This \"is\"
7 a string"""
8 s3_string = '''This "is"
9 a string'''

10
11 # raw strings suspend "special"
12 # sequences like \n
13 ra_string = r'This "is"\na string'
14
15 for k,v in locals().items():
16 print(f"{k}:\n{v}\n")
17
18 show_strings()

1 shell>> python pystrings.py
2 dq_string:
3 This "is"
4 a string
5
6 sq_string:
7 This "is"
8 a string
9

10 d3_string:
11 This "is"
12 a string
13
14 s3_string:
15 This "is"
16 a string
17
18 ra_string:
19 This "is"\na string

10

Why Raw Strings

Some backslash sequences mean one thing in ASCII/Character
contexts and another in Regexs

Seq ASCII Regex
\b Backspace (ASCII code 8) Boundary of words

Raw strings suspend interpretation of backslash sequences
>>> print("Hello \bworld")
Helloworld
>>> print(r"Hello \bworld")
Hello \bworld

11

Essential Python Regex Functions

Function / Syntax Purpose
import re Use the regex module
CREATE STRING LISTS
re.findall(regex,text) Produce a list of all matching substrings
re.split(regex,text) Produce a list of strings BETWEEN matches
CREATE Match OBJECTS
re.search(regex,text) Produce a Match object or None
re.finditer(regex,text) Produce an iterable object for of Matches
ACCESS Match OBJECTS
m.group() Produce the whole string that matched the regex
m[0] Produce the whole string that matched the regex
m.span() Produce pair of (beg,end) index of match in string

Tour re_essentials.py for examples

12

Checking if Matches are Found
When one wants only to detect if a regex match is present,
re.search() is often used to produce a Match object or None

1 # re_search.py:
2 text="""Pellentesque dapibus 7592 suscipit ligula. Donec
3 25.6 posuere augue in quam 1.1507?"""
4
5 m = re.search("\d+",text) # search for digits
6 if m != None: # if not None ...
7 print(f"Found match: {m[0]}")
8 else:
9 print("No match present")

10 # Found match: 7592
11
12 m = re.search("\w+pi\w+",text) # word with 'pi' in the middle
13 if m: # Match objects are truthy
14 print(f"Found match: {m[0]}") # while None is falsey
15 else:
16 print("No match present")
17 # Found match: dapibus
18
19 m = re.search("\w+ily",text) # word ends in 'ily' which
20 if m: # is not present so None
21 print(f"Found match: {m[0]}") # triggers the alternative
22 else: # else to execute
23 print("No match present")
24 # No match present 13

Modifying Strings with Regexs

▶ A common use of Regexs is to locate matching strings and
modify them systematically

▶ EXAMPLE: In the following text replace all Patterns of the
form Chapter X Section Y with Chapter X.Y

In Chapter 3 Section 5 we will discuss the merits of dynamically
typed languages. That Section should be studied as later
in Chapter 4 Section 1 we will cover static type systems with the
following Chapter 4 Section 2 providing a summary of the trade-offs
between static and dynamic. Chapter 5 Section 12 begins discusion of
logic programming...

▶ Note that replacing Section with . will modify text NOT
matching the whole pattern AND the substitution contains
parts of the match

▶ One can write “custom code” to do this but those with regex
experience will easily handle these task

▶ Motivates the notion of groups in regexs

14

Regex Groups

▶ Created with the (pat) syntax and numbered left to right
▶ Pertinent Example:

Group 0
|||||||||||||||||||||||||||

Regex: r"Chapter (\d+) Section (\d+)"
||| |||

Group1 Group2
▶ Group 0 is always the whole match
▶ Group 1 is the leftmost (to its matching)
▶ Group N follows suit

15

Demonstration of Groups

1 # re_substitution.py:
2 import re
3
4 text="""In Chapter 3 Section 5 we will discuss the merits of dynamically typed
5 languages. That Section should be studied as later in Chapter 4
6 Section 1 we will cover static type systems with Chapter 4 Section 2
7 providing a summary of the trade-offs between static and
8 dynamic. Chapter 5 Section 12 begins discusion of logic programming...
9 """

10
11 print("\nre.findall() groups")
12 hits_w_groups = re.findall(r"Chapter (\d+) Section (\d+)", text)
13 print(f"hits_w_groups: {hits_w_groups}")
14 # hits_w_groups: [('3', '5'), ('4', '2'), ('5', '12')]
15
16 print("\nre.finditer()")
17 hits_iter = re.finditer(r"Chapter (\d+) Section (\d+)", text)
18 for m in hits_iter:
19 print(f"m[0]: {m[0]} \t m[1]: {m[1]} \t m[2]: {m[2]}")
20 # m[0]: Chapter 3 Section 5 m[1]: 3 m[2]: 5
21 # m[0]: Chapter 4 Section 2 m[1]: 4 m[2]: 2
22 # m[0]: Chapter 5 Section 12 m[1]: 5 m[2]: 12

16

Substitutions

Function Effect
re.sub(regex, subst, text) Substitute all occurrences of

regex with subst in text
re.sub(regex, subst, text, 3) Limit subs to first 3

occurrences of regex

Within subst the syntax \1 refers to Group 1, \1 refers to Group
2, etc.

17

Substitution Examples
1 # re_substitution.py:
2
3 print(f"text:\n{text}")
4 sub_text = re.sub(r"Chapter (\d+) Section (\d+)",
5 r"Chapter \1.\2", text)
6 print(f"sub_text:\n{sub_text}")
7 # sub_text:
8 # In Chapter 3.5 we will discuss the merits of dynamically typed
9 # languages. That Section should be studied as later in Chapter 4

10 # Section 1 we will cover static type systems with Chapter 4.2
11 # providing a summary of the trade-offs between static and
12 # dynamic. Chapter 5.12 begins discusion of logic programming...
13
14
15 print("\nre.sub() limit 3")
16 sub_text3 = re.sub(r"Chapter (\d+) Section (\d+)",
17 r"Chapter \1.\2", text, 2)
18 print(f"sub_text3:\n{sub_text3}")
19 # sub_text3:
20 # In Chapter 3.5 we will discuss the merits of dynamically
21 # typed languages. That Section should be studied as later
22 # in Chapter 4.1 we will cover static type systems with the
23 # following Chapter 4 Section 2 providing a summary of the trade-offs
24 # between static and dynamic. Chapter 5 Section 12 begins discusion of
25 # logic programming...

18

Python is Full of Goodies

Named Groups
Python regex groups can be named rather than numerically
referenced
>>> details = '2018-10-25,car,2346'
>>> re.search(r'(?P<date>[^,]+),(?P<product>[^,]+)', details).groupdict()
{'date': '2018-10-25', 'product': 'car'}

Compiling Regexs
▶ Regexs must be compiled down to a finite state machine
▶ Mostly this is done automatically and cached for repeated use
▶ Sometimes its useful to do so manually as it may improve

efficiency via
pattern = re.compile(r"^[a2-9tjqk]{5}$")
strs = re.findall(pattern,text)

19

