CMSC330: Higher-Order Functions (in Python)

Chris Kauffman

Last Updated:
Tue Sep 5 09:22:52 AM EDT 2023

Logistics
Assignments

» Lecture Quiz 1 now closed
» Project 0 “Setup” Ongoing
» Project 1 “Intro Python” Due Sun 10-Sep

Reading
Python Functional Programming HOWTO : Focus on map(),
filter(), reduce() and lambda() expressions
Goals
» Wrap up Python Basics
» Discuss first-class functions, relation to nested scope
» Uses for higher-order function which take function args
» Big-4 higher-order funcs
>

Lambda expressions for anonymous func args

https://docs.python.org/3/howto/functional.html

First-Class Functions which Act as Values

» Like many PLs, Python supports treating functions as values

> Referred to as First-Class Functions though this term often
carries additional obligations (some of which Python fulfills)

1 # function_value.py:

2 def double_it(x): # define function

3 return 2*x

4 print(double_it) # show a printed rep of func
5 # <function double_it at 0x7£fb221d984a0>
6
7
8
9

a = double_it(5) # call function
print(a)
10

11 di = double_it # alias for double_it()
12 print(di)
13 # <function double_it at 0x7fb221d984a0>

15 b = di(7) # call di() -> double_it()
16 print(b)
17 # 14

» Higher-Order Functions

accept function arguments

or return functions (or both)

Function args are useful to
tailor semi-complex
behavior: rather than trying
to implement all options
internally, HO func accepts
behavior as an argument

Higher-Order Functions: Function Parameters / Returns

function_args.py:
def scale_list(func, alist):
for i in range(len(alist)):
alist[i] = func(alist[il)

def double_it(x):
return 2*x

def halve_it(x):
return x/2

import math
def log2_it(x):
return math.log2(x)

11 = [10, 20, 30, 40]

12 = 11.copy()
scale_list(double_it, 12)
print(12) # [20, 40, 60, 80]

13 = 11.copy()
scale_list(halve_it, 13)
scale_list(log2_it, 13)

print(13) # [2.32, 3.32, 3.90, 4.32]

Exercise: apply2 and apply_all

Write the following two higher order functions, 1-4 lines each

def apply2(funci, func2, data): def apply_all(func_list, data):

WRITE ME! # WRITE ME!
apply2(double_it, halve_it, 10) flist = [double_it, halve_it, log2_it]
(20, 5) apply_all(flist, 10)

[20, 5.0, 3.32]
apply2(log2_it, double_it, 32)
(5, 64)

Answers: apply2 and apply_all

Write the following two higher order functions, 1-4 lines each

1 # apply_exercise.py:

2 def apply2(funcl, func2, data):

3 datal = funcil(data)

4 data2 = func2(data)

5 # return (funcl(data),func2(data))
6 return (datal,data2)
7
8
9

def apply_all(func_list, data):
data_list = []
10 for func in func_list:
11 data_list.append(func(data))
12 return data_list
13

Standard Higher-Order Functions

» Several Higher-Order Functions appear widely in computing

> Worth knowing about as their own entity, will appear in
Python, OCaml, Racket, and others

» Each function works with a Data Structure (DS) like a List

The 4 Recurring Higher Order Funcs

Map Create a new DS with function applied to each
element, same shape of DS with new elements

Filter Create a new DS with only elements of that return
True from a function; converts a DS to a (probably)
smaller DS

Reduce Repeatedly apply function to an element of DS and a
current value; transforms DS to a single value,
generalizes “summing” a list

Iterate Execute a function on each element of DS for
side-effects (e.g. print()) only; discards return
values

Aside:

v

Python lterators and 1ist () Coercion

Python supports generators / iterators, an efficient means
of providing large collections of items WITHOUT storing
them in memory
Central idea: Generator asked for next item, returns item or
indicates none left in which case iteration terminates
Used with the for a in X: syntax where X is iterable
Lists, Dictionaries, Sets are all iterable in Python
range () is a generator, can be coerced to a list

>>> range(10)

range (0, 10)

>>> list(range(10))

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Higher-order functions like map () work on an iterator,
produce a new iterator

Will coerce results to a 1ist () to see the results

map (func,data)

> Creates a new DS (list) with each element “transformed” by
applying func ()
» New DS is distinct and separate from old, return vals of

function populate new DS
map_demo.py:
def add_one(x):
return x+1

1

2

3

4

5 numsO = [10,20,30,40]

6 numsl = map(add_one,nums0)

7 numsll = list(map(add_one,nums0))

8

9 print(f'"numsO: {numsO0}") # numsO: [10, 20, 30, 40]
10 print(f"numsi: <{nums1}") # numsil: <map object at 0x7£597bd67d00>
11 print(f"nums1l: {nums1l}") # numsil: [11, 21, 31, 41]

13 def upcase(x):
14 return x.upper ()

15

16 strsm = ["cat","Dog","pIg"]

17 strsu = map(upcase, strsm)

18 strsul = list(map(upcase, strsm))

19

20 print(f"strsm: {strsm}") # strsm: ['cat', 'Dog', 'plg']

21 print(f"strsu: {strsu}") # strsu: <map object at 0x7f597bd66620>
22 print(f"strsul: {strsul}") # strsul: ['CAT', 'DOG', 'PIG']

A Code Pattern for HOFs

You should have noticed the

following pattern
def smallfuncl(arg):

def smallfunc2(arg):
def hofunc(func_arg, othe_args):

hofunc(smallfuncl, ...)
hofunc(smallfunc2, ...)

» Higher-order functions may
be modest in length or quite
long

» The small functions that
become arguments are often
one-liners

» It would be nice if one could
avoid the need to def-ine
the small functions

10

Lambda Expressions: Anonymous Function Creation

> Lambda Expression or just Lambda: a syntax to create a
function body without naming the function

» Sometimes referred to as anonymous functions

» Often part of what's meant by “first-order functions” in PLs

lambda_demo.py:
def double_it1(x):
return 2%*x

double_it2 = lambda x: 2*x
NAME LAMBDA EXPRESSION

alist = [1,2,3,4,5]

print (list (map(double_itl, alist)))
[2, 4, 6, 8, 10]

print (list (map(double_it2, alist)))
[2, 4, 6, 8, 10]

standard func binding

lambda binding

call w/ standard func

call w/ lambda func

print(list(map(lambda y: 2xy, alist))) # call w/ lambda directly

[2, 4, 6, 8, 10]

print(list(map(lambda x: x+1, alist))) # call w/ different lambda

[2, 3, 4, 5, 6]

11

Lambdas in Python

» Python has limited support for functional programming so
doesn't endow Lambdas with much power
» Can accept multiple arguments but. ..
» Single line only, no use of conditionals / loops
» Single expression only which is its return

» Partly the lack of support stems from Guido's preference for

other styles
About 12 years ago, Python aquired lambda, reduce(), filter() and
map(), courtesy of (I believe) a Lisp hacker who missed them and
submitted working patches. But, despite of the PR value, | think
these features should be cut from Python 3000.
— Guido van Rossum, “The fate of reduce() in Python 3000”, March
10, 2005

» Functional languages like OCaml and Racket will have richer
support for Lambdas and related lexical closures

12

https://www.artima.com/weblogs/viewpost.jsp?thread=98196
https://www.artima.com/weblogs/viewpost.jsp?thread=98196
https://www.artima.com/weblogs/viewpost.jsp?thread=98196

Filter

e
B O © 00 N O 0P WwN =

B e
=W N

Create a smaller DS (list) containing only elements that return

True from filter function

filter_demo.py:
words = ["apple","banana","apricot","grape","artichoke"]

awords = list(filter(lambda x: x[0]=="a", words))
print (awords) # ['apple', 'apricot', 'artichoke']

short_words = list(filter(lambda x: len(x) <= 5, words))
print(short_words) # ['apple', 'grape']

long_words = list(filter(lambda x: len(x) > 5, words))
print (long_words) # ['banana', 'apricot', 'artichoke']

all_words = list(filter(lambda x: 5.5, words))
print(all_words) # entire list due to 5.5 being truthy

13

Reduce

Generalizes “summing a list”: initial value 0, add each item
Reduce allows operations other than “add” and other initial
values than “0" so that

Create a single value from a DS of elements by repeatedly
applying an operation beginning with an initial value
reduce () requires an import from functools as it was
dropped funcs automatically available

Reductions come up elsewhere in computing and are worth
noting

14

Reduce Examples

1

© 0N W N

WRNNNNNNNRNNDNDE B BB s s s
SO OV DARDNRO©O©ONTODO S DN~ O

reduce_demo.py:
from functools import reduce # reduce() not

nums = [10,20,30,40] # some date to

asum0 = reduce(lambda cur,x: x+cur, nums, 0)
print (asum0) # 100

asum13 = reduce(lambda cur,x: x+cur, nums, 13)
print (asum13) # 113

asum_def = reduce(lambda cur,x: x+cur, nums)
print (asum_def) # 100

aprodl = reduce(lambda cur,x: x*cur, nums, 1)
print (aprodl) # 240000

aprod_def = reduce(lambda cur,x: x*cur, nums)
print (aprod_def) # 240000

astr = reduce(lambda cur,x: cur+str(x)+"
print (astr) # "10 20 30 40 "

"
>

in default imports
operat on

sum starting at O

sum starting at 13

default to sum list only

product of list, init 1

product of list only

nums, "") # string concat

amax = reduce(lambda cur,x: x if x>cur else cur, nums) # reduce via max

print (amax) # 40

amax2 = reduce(max, nums)
print (amax) # 40

print (max (nums))

max() func used directly

pythonic style

15

[ter

e
B O O 00 N O O WwN =

> lterate over a DS (list) and apply a function solely for side
effects (e.g. printing, writing to file, logging, etc.)

» Being an imperative language, Iter is not available in standard
Python as it is more canonical to use a for loop

» Available in via the more_itertools package as
side_effect

> Additionally requires use of the consume () function to
evaluate all iterations

from more_itertools import *

words = ["apple","banana","apricot","grape","artichoke"]
consume (side_effect(lambda x: print(x),words))

prints all words

alist=[] # empty list
consume (side_effect(lambda x: alist.append(x),words))

iterate over words appending to alist

print(alist) # copy of words[]

16

Python List Comprehensions

© 0N U WN

e e sl
o U W N = O

» Python has other mechanisms that are more canonical than
Map/Reduce/Filter

> List comprehensions are a semi-complex syntax to create
lists and are often used in place of Map / Filter

» Worth knowing about but NOT a subject of further discussion
in CMSC330

>>> [x for x in range(10)]
fo, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> [2*x for x in range(10)]
[o, 2, 4, 6, 8, 10, 12, 14, 16, 18]

>>> [x for x in range(20) if x72==0]
[o, 2, 4, 6, 8, 10, 12, 14, 16, 18]

transform iterable filter
>>> [3xx+1 for x in range(20) if x%2==0]
1, 7, 13, 19, 25, 31, 37, 43, 49, 55]

>>> words = ["apple","banana","apricot","grape","artichoke"]
>>> [x for x in words if x[0]=="a"]
['apple', 'apricot', 'artichoke']

17

Python's sort() w/ First-Class Functions

» One common place you will see functions passed as arguments
is in Sorting functions

» The comparison / comparator function is what is used to
compare elements and determine sorting order as used in
Java, C, OCaml, Racket, and most other PLs

» Python has a limited version of this, a “key” parameter that
allows transformation of values in the list

> Will revisit first-class funcs in OCaml / Racket to see this
sort_demo.py:
nums = [23426, -16781, 9963, 10870, 677,
-21218, 22541, 11610, 24488, -24855]

nums . sort () # sort the list

print (nums) # w/ standard order

[-24855, -21218, -16781, 677, 9963, 10870, 11610, 22541, 23426, 24488]
nums . sort (key=abs) # sort by absolute

print (nums) # value via abs()

[677, 9963, 10870, 11610, -16781, -21218, 22541, 23426, 24488, -24855]
nums . sort (key=lambda x: -x) # sort in reverse

print (nums) # via a lambda

[24488, 23426, 22541, 11610, 10870, 9963, 677, -16781, -21218, -24855]

18

https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html
https://www.tutorialspoint.com/c_standard_library/c_function_qsort.htm
https://v2.ocaml.org/api/List.html#1_Sorting
https://docs.racket-lang.org/reference/vectors.html#%28def._%28%28lib._racket%2Fvector..rkt%29._vector-sort%29%29

Nested Functions and Scope in Python
nested_scope.py:
dei otllter:fljnﬁ(oarg): > Python SUppOI’tS nested
ceem s functions with more/less

1

2

3

4

5 def inner_funci(iarg): .
. expected behavior of
7

8

9

iloc = "j"
print (f"inner_func1():") Scoping
print(f" iloc:{iloc} iarg:{iarg}")
print(f" oloc:{oloc} oarg:{oarg}") » Scope: where variable /
10 return 1
11 symbol is visible and can be
12 def inner_func2(iarg):
13 iloc = "k" used
14 print (f"inner_func2():") H
i print(£" iloc:{iloc} iarg:{iarg}") » Inner functlon§ have access
16 print(f" oloc:{oloc} oarg:{oarg}") to outer function variables
17 return 2
18 » inner_funci() can
19 oloc = "q" “see” oarg and oloc
20 rl = inner_func1("x")
21 oloc = "u" from the outer scope
2 r2 =linne.3r_func2("y") » Likewise for
23 # print(iloc) # error .
24 return ri+r2 inner_func2()
25
26 » Quter scope cannot “see”

27 r = outer_func("a")

2 print (o) inner variables: line 23 error

