
CMSC330: Higher-Order Functions (in Python)

Chris Kauffman

Last Updated:
Tue Sep 5 09:22:52 AM EDT 2023

1

Logistics
Assignments
▶ Lecture Quiz 1 now closed
▶ Project 0 “Setup” Ongoing
▶ Project 1 “Intro Python” Due Sun 10-Sep

Reading
Python Functional Programming HOWTO : Focus on map(),
filter(), reduce() and lambda() expressions

Goals
▶ Wrap up Python Basics
▶ Discuss first-class functions, relation to nested scope
▶ Uses for higher-order function which take function args
▶ Big-4 higher-order funcs
▶ Lambda expressions for anonymous func args

2

https://docs.python.org/3/howto/functional.html

First-Class Functions which Act as Values

▶ Like many PLs, Python supports treating functions as values
▶ Referred to as First-Class Functions though this term often

carries additional obligations (some of which Python fulfills)
1 # function_value.py:
2 def double_it(x): # define function
3 return 2*x
4 print(double_it) # show a printed rep of func
5 # <function double_it at 0x7fb221d984a0>
6
7 a = double_it(5) # call function
8 print(a)
9 # 10

10
11 di = double_it # alias for double_it()
12 print(di)
13 # <function double_it at 0x7fb221d984a0>
14
15 b = di(7) # call di() -> double_it()
16 print(b)
17 # 14

3

Higher-Order Functions: Function Parameters / Returns

▶ Higher-Order Functions
accept function arguments
or return functions (or both)

▶ Function args are useful to
tailor semi-complex
behavior: rather than trying
to implement all options
internally, HO func accepts
behavior as an argument

function_args.py:
def scale_list(func, alist):

for i in range(len(alist)):
alist[i] = func(alist[i])

def double_it(x):
return 2*x

def halve_it(x):
return x/2

import math
def log2_it(x):

return math.log2(x)

l1 = [10, 20, 30, 40]

l2 = l1.copy()
scale_list(double_it, l2)
print(l2) # [20, 40, 60, 80]

l3 = l1.copy()
scale_list(halve_it, l3)
scale_list(log2_it, l3)
print(l3) # [2.32, 3.32, 3.90, 4.32]

4

Exercise: apply2 and apply_all

Write the following two higher order functions, 1-4 lines each

def apply2(func1, func2, data):
WRITE ME!

apply2(double_it, halve_it, 10)
(20, 5)

apply2(log2_it, double_it, 32)
(5, 64)

def apply_all(func_list, data):
WRITE ME!

flist = [double_it, halve_it, log2_it]
apply_all(flist, 10)
[20, 5.0, 3.32]

5

Answers: apply2 and apply_all

Write the following two higher order functions, 1-4 lines each
1 # apply_exercise.py:
2 def apply2(func1, func2, data):
3 data1 = func1(data)
4 data2 = func2(data)
5 # return (func1(data),func2(data))
6 return (data1,data2)
7
8 def apply_all(func_list, data):
9 data_list = []

10 for func in func_list:
11 data_list.append(func(data))
12 return data_list
13

6

Standard Higher-Order Functions
▶ Several Higher-Order Functions appear widely in computing
▶ Worth knowing about as their own entity, will appear in

Python, OCaml, Racket, and others
▶ Each function works with a Data Structure (DS) like a List

The 4 Recurring Higher Order Funcs
Map Create a new DS with function applied to each

element, same shape of DS with new elements
Filter Create a new DS with only elements of that return

True from a function; converts a DS to a (probably)
smaller DS

Reduce Repeatedly apply function to an element of DS and a
current value; transforms DS to a single value,
generalizes “summing” a list

Iterate Execute a function on each element of DS for
side-effects (e.g. print()) only; discards return
values

7

Aside: Python Iterators and list() Coercion
▶ Python supports generators / iterators, an efficient means

of providing large collections of items WITHOUT storing
them in memory

▶ Central idea: Generator asked for next item, returns item or
indicates none left in which case iteration terminates

▶ Used with the for a in X: syntax where X is iterable
▶ Lists, Dictionaries, Sets are all iterable in Python
▶ range() is a generator, can be coerced to a list

>>> range(10)
range(0, 10)
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

▶ Higher-order functions like map() work on an iterator,
produce a new iterator

▶ Will coerce results to a list() to see the results
8

map(func,data)
▶ Creates a new DS (list) with each element “transformed” by

applying func()
▶ New DS is distinct and separate from old, return vals of

function populate new DS
1 # map_demo.py:
2 def add_one(x):
3 return x+1
4
5 nums0 = [10,20,30,40]
6 nums1 = map(add_one,nums0)
7 nums1l = list(map(add_one,nums0))
8
9 print(f"nums0: {nums0}") # nums0: [10, 20, 30, 40]

10 print(f"nums1: {nums1}") # nums1: <map object at 0x7f597bd67d00>
11 print(f"nums1l: {nums1l}") # nums1l: [11, 21, 31, 41]
12
13 def upcase(x):
14 return x.upper()
15
16 strsm = ["cat","Dog","pIg"]
17 strsu = map(upcase, strsm)
18 strsul = list(map(upcase, strsm))
19
20 print(f"strsm: {strsm}") # strsm: ['cat', 'Dog', 'pIg']
21 print(f"strsu: {strsu}") # strsu: <map object at 0x7f597bd66620>
22 print(f"strsul: {strsul}") # strsul: ['CAT', 'DOG', 'PIG']

9

A Code Pattern for HOFs

You should have noticed the
following pattern
def smallfunc1(arg):

...

def smallfunc2(arg):
...

def hofunc(func_arg, othe_args):
...
...
...

hofunc(smallfunc1, ...)
hofunc(smallfunc2, ...)

▶ Higher-order functions may
be modest in length or quite
long

▶ The small functions that
become arguments are often
one-liners

▶ It would be nice if one could
avoid the need to def-ine
the small functions

10

Lambda Expressions: Anonymous Function Creation
▶ Lambda Expression or just Lambda: a syntax to create a

function body without naming the function
▶ Sometimes referred to as anonymous functions
▶ Often part of what’s meant by “first-order functions” in PLs

lambda_demo.py:
def double_it1(x): # standard func binding

return 2*x

double_it2 = lambda x: 2*x # lambda binding
NAME LAMBDA EXPRESSION

alist = [1,2,3,4,5]

print(list(map(double_it1, alist))) # call w/ standard func
[2, 4, 6, 8, 10]

print(list(map(double_it2, alist))) # call w/ lambda func
[2, 4, 6, 8, 10]

print(list(map(lambda y: 2*y, alist))) # call w/ lambda directly
[2, 4, 6, 8, 10]

print(list(map(lambda x: x+1, alist))) # call w/ different lambda
[2, 3, 4, 5, 6]

11

Lambdas in Python

▶ Python has limited support for functional programming so
doesn’t endow Lambdas with much power
▶ Can accept multiple arguments but. . .
▶ Single line only, no use of conditionals / loops
▶ Single expression only which is its return

▶ Partly the lack of support stems from Guido’s preference for
other styles

About 12 years ago, Python aquired lambda, reduce(), filter() and
map(), courtesy of (I believe) a Lisp hacker who missed them and
submitted working patches. But, despite of the PR value, I think
these features should be cut from Python 3000.
– Guido van Rossum, “The fate of reduce() in Python 3000”, March
10, 2005

▶ Functional languages like OCaml and Racket will have richer
support for Lambdas and related lexical closures

12

https://www.artima.com/weblogs/viewpost.jsp?thread=98196
https://www.artima.com/weblogs/viewpost.jsp?thread=98196
https://www.artima.com/weblogs/viewpost.jsp?thread=98196

Filter

Create a smaller DS (list) containing only elements that return
True from filter function

1 # filter_demo.py:
2 words = ["apple","banana","apricot","grape","artichoke"]
3
4 awords = list(filter(lambda x: x[0]=="a", words))
5 print(awords) # ['apple', 'apricot', 'artichoke']
6
7 short_words = list(filter(lambda x: len(x) <= 5, words))
8 print(short_words) # ['apple', 'grape']
9

10 long_words = list(filter(lambda x: len(x) > 5, words))
11 print(long_words) # ['banana', 'apricot', 'artichoke']
12
13 all_words = list(filter(lambda x: 5.5, words))
14 print(all_words) # entire list due to 5.5 being truthy

13

Reduce

▶ Generalizes “summing a list”: initial value 0, add each item
▶ Reduce allows operations other than “add” and other initial

values than “0” so that
▶ Create a single value from a DS of elements by repeatedly

applying an operation beginning with an initial value
▶ reduce() requires an import from functools as it was

dropped funcs automatically available
▶ Reductions come up elsewhere in computing and are worth

noting

14

Reduce Examples
1 # reduce_demo.py:
2 from functools import reduce # reduce() not in default imports
3
4 nums = [10,20,30,40] # some date to operat on
5
6 asum0 = reduce(lambda cur,x: x+cur, nums, 0) # sum starting at 0
7 print(asum0) # 100
8
9 asum13 = reduce(lambda cur,x: x+cur, nums, 13) # sum starting at 13

10 print(asum13) # 113
11
12 asum_def = reduce(lambda cur,x: x+cur, nums) # default to sum list only
13 print(asum_def) # 100
14
15 aprod1 = reduce(lambda cur,x: x*cur, nums, 1) # product of list, init 1
16 print(aprod1) # 240000
17
18 aprod_def = reduce(lambda cur,x: x*cur, nums) # product of list only
19 print(aprod_def) # 240000
20
21 astr = reduce(lambda cur,x: cur+str(x)+" ", nums, "") # string concat
22 print(astr) # "10 20 30 40 "
23
24 amax = reduce(lambda cur,x: x if x>cur else cur, nums) # reduce via max
25 print(amax) # 40
26
27 amax2 = reduce(max, nums) # max() func used directly
28 print(amax) # 40
29
30 print(max(nums)) # pythonic style

15

Iter
▶ Iterate over a DS (list) and apply a function solely for side

effects (e.g. printing, writing to file, logging, etc.)
▶ Being an imperative language, Iter is not available in standard

Python as it is more canonical to use a for loop
▶ Available in via the more_itertools package as

side_effect
▶ Additionally requires use of the consume() function to

evaluate all iterations
1 from more_itertools import *
2
3 words = ["apple","banana","apricot","grape","artichoke"]
4 consume(side_effect(lambda x: print(x),words))
5 # prints all words
6
7 alist=[] # empty list
8 consume(side_effect(lambda x: alist.append(x),words))
9 # iterate over words appending to alist

10
11 print(alist) # copy of words[]

16

Python List Comprehensions
▶ Python has other mechanisms that are more canonical than

Map/Reduce/Filter
▶ List comprehensions are a semi-complex syntax to create

lists and are often used in place of Map / Filter
▶ Worth knowing about but NOT a subject of further discussion

in CMSC330
1 >>> [x for x in range(10)]
2 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
3
4 >>> [2*x for x in range(10)]
5 [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
6
7 >>> [x for x in range(20) if x%2==0]
8 [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
9

10 # transform iterable filter
11 >>> [3*x+1 for x in range(20) if x%2==0]
12 [1, 7, 13, 19, 25, 31, 37, 43, 49, 55]
13
14 >>> words = ["apple","banana","apricot","grape","artichoke"]
15 >>> [x for x in words if x[0]=="a"]
16 ['apple', 'apricot', 'artichoke']

17

Python’s sort() w/ First-Class Functions
▶ One common place you will see functions passed as arguments

is in Sorting functions
▶ The comparison / comparator function is what is used to

compare elements and determine sorting order as used in
Java, C, OCaml, Racket, and most other PLs

▶ Python has a limited version of this, a “key” parameter that
allows transformation of values in the list

▶ Will revisit first-class funcs in OCaml / Racket to see this
sort_demo.py:
nums = [23426, -16781, 9963, 10870, 677,

-21218, 22541, 11610, 24488, -24855]

nums.sort() # sort the list
print(nums) # w/ standard order
[-24855, -21218, -16781, 677, 9963, 10870, 11610, 22541, 23426, 24488]
nums.sort(key=abs) # sort by absolute
print(nums) # value via abs()
[677, 9963, 10870, 11610, -16781, -21218, 22541, 23426, 24488, -24855]
nums.sort(key=lambda x: -x) # sort in reverse
print(nums) # via a lambda
[24488, 23426, 22541, 11610, 10870, 9963, 677, -16781, -21218, -24855]

18

https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html
https://www.tutorialspoint.com/c_standard_library/c_function_qsort.htm
https://v2.ocaml.org/api/List.html#1_Sorting
https://docs.racket-lang.org/reference/vectors.html#%28def._%28%28lib._racket%2Fvector..rkt%29._vector-sort%29%29

Nested Functions and Scope in Python
1 # nested_scope.py:
2 def outer_func(oarg):
3 # oloc = "q"
4
5 def inner_func1(iarg):
6 iloc = "j"
7 print(f"inner_func1():")
8 print(f" iloc:{iloc} iarg:{iarg}")
9 print(f" oloc:{oloc} oarg:{oarg}")

10 return 1
11
12 def inner_func2(iarg):
13 iloc = "k"
14 print(f"inner_func2():")
15 print(f" iloc:{iloc} iarg:{iarg}")
16 print(f" oloc:{oloc} oarg:{oarg}")
17 return 2
18
19 oloc = "q"
20 r1 = inner_func1("x")
21 oloc = "u"
22 r2 = inner_func2("y")
23 # print(iloc) # error
24 return r1+r2
25
26
27 r = outer_func("a")
28 print(r)

▶ Python supports nested
functions with more/less
expected behavior of
scoping

▶ Scope: where variable /
symbol is visible and can be
used

▶ Inner functions have access
to outer function variables
▶ inner_func1() can

“see” oarg and oloc
from the outer scope

▶ Likewise for
inner_func2()

▶ Outer scope cannot “see”
inner variables: line 23 error

19

