
CMSC330: Python Basics

Chris Kauffman

Last Updated:
Mon Sep 4 12:21:11 PM EDT 2023

1

Logistics

Reading
The Python Tutorial:
https://docs.python.org/3/tutorial/index.html
▶ Skim, skip around, experiment
▶ Any other python reference should be good too
▶ Idea is to get a quick high level understanding

Goals
▶ Understand basic syntax of Python
▶ Relate Python to Java
▶ Identify imperative nature of both Languages

2

https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html

Python
▶ Development started in late 1980s
▶ Version 2 released in 2000, fairly recognizable
▶ Version 3 released in 2008, was NOT backwards

compatible
print "Hello" # version 2
print("Hello") # version 3

▶ Created a vast schism; still some version 2 code in
use out there today

▶ “Fun” to program in: do a lot with few lines of code
▶ Relatively straight-forward to interface with C
▶ Often used as an intro language due to its friendly

looking syntax (both my old university did and UMD
is rumored to be looking to try Python in 131)

▶ Wildly popular in all realms of computing from web
frameworks to machine learning / data science to
robotics, great to have on your resume

Python’s Primary
author is Dutch
coder Guido von
Rossum, dubbed

“Benevolent
dictator for life”

by the
development
community.

3

Every Programming Language

Look for the following as it should almost always be there
□ Comments
□ Statements/Expressions
□ Variable Types
□ Assignment
□ Basic Input/Output (printing and reading)
□ Function Declarations
□ Conditionals (if-else)
□ Iteration (loops)
□ Aggregate data (arrays, records, objects, etc)
□ Library System

4

Exercise: Collatz Computation An Introductory Example

▶ collatz.py prompts for an integer and computes the Collatz
Sequence starting there

▶ The current number is updated to the next in the sequence via
if cur is EVEN cur=cur/2; else cur=cur*3+1

▶ This process is repeated until it converges to 1 (mysteriously)
or the maximum iteration count is reached

▶ The code demonstrates a variety of Python features and
makes for a great crash course intro

▶ With a neighbor, study this code and identify the features you
should look for in every programming language

5

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Exercise: Collatz Computation An Introductory Example
1 # collatz.py: collatz computation
2 verbose = True # global var
3
4 def collatz(start,maxsteps): # function
5 cur = start
6 step = 0
7 if verbose:
8 print("start:",start,"maxsteps:",maxsteps)
9 print("Step Current")

10 print(f"{step:3}: {cur:5}")
11 while cur != 1 and step < maxsteps:
12 step += 1
13 if cur % 2 == 0:
14 cur = cur // 2
15 else:
16 cur = cur*3 + 1
17 if verbose:
18 print(f"{step:3}: {cur:5}")
19 return (cur,step)
20
21 # executable code at global scope
22 start_str = input("Collatz start val:\n")
23 start = int(start_str)
24
25 (final,steps) = collatz(start, 500)
26 print(f"Reached {final} after {steps} iters")

Look for. . . Comments,
Statements/Expressions,
Variable Types, Assignment,
Basic Input/Output, Function
Declarations, Conditionals,
Iteration, Aggregate Data,
Library System

>> python collatz.py
Collatz start val:
10
start: 10 maxsteps: 500
Step Current

0: 10
1: 5
2: 16
3: 8
4: 4
5: 2
6: 1

Reached 1 after 6 iters

6

Answers: Collatz Computation An Introductory Example
⊠ Comments: # comment to end of line
⊠ Statements/Expressions: written plainly, no semicolons, stuff

like a+b or n+=2 is old hat; Boolean expressions available via
x and y implicating z or w is likely around

⊠ Variable Types: string, integer, boolean are obvious as values,
no type names mentioned save the conversion from string to
integer via the int(str) function

⊠ Assignment: via somevar = avalue
⊠ Basic Input/Output (printing and reading): print() /

input()
⊠ Function Declarations: def funcname(param1,param2):
⊠ Conditionals (if-else): if cond: and else:, also elif:
⊠ Iteration (loops): clearly while cond:, others soon
⊟ Aggregate data (arrays, records, objects, etc):

(python,has,tuples) and others we’ll discuss soon
□ Library System: soon

7

A Few Oddities

▶ Python has two division operators a / b for floating point
division, a // b for integer division. Dynamic types make this
easy to forget and likely to cause errors

>>> 11 / 3 # float div
3.6666666666666665
>>> 11 // 3 # int div
3
>> 11.99 / 3.99 # float div
3.0050125313283207
>>> 11.99 // 3.99 # what now?
3.0

▶ Python has several means of formatted output; we’ll favor
print("substitue x: {} and y: {}".format(x,y)) # older, position subs
print(f"substitue x: {x} and y: {y}") # newer, symbolic subs
^ f for format

8

REPL: Read-Evaluate-Print Loop
▶ Python features a REPL to interactively interpret Python

statements on the fly
▶ Allows for easy experimentation and testing of code
▶ REPLs appear in many forms, are closely associated with

Dynamic languages (like command line shells)
shell>> python

Python 3.11.3 (main, Jun 5 2023, 09:32:32) [GCC 13.1.1 20230429] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 1+2
3
>>> "hello" + " world"
'hello world'
>>> x=1+2
>>> s="hello" + " world"
>>> print(x)
3
>>> print(s)
hello world
>>> exit()

shell>>
9

Python Runs as a “Scripting” Language
▶ “Scripting Language” is a loose term associated with PLs that

favor short programs in text files that are run through an
interpreter program, in this case python

▶ Examples include Python (caveats), Javascript, Shell Scripts,
Awk, Lua, Perl TCL, and myriad others

▶ Usually programs are directly executed by their interpreter by
reading some statements, executing, reading more statements,
executing, etc. (e.g. NOT compiled to a lower form)

shell>> cat expressions.py
1+2 # expressions output in the REPL
"hello" + " world" # but not in scripts

x=1+2 # assignment has no output
s="hello" + " world" # in the REPL or as scripts

print(x) # print() producees output in
print(s) # REPL and in scripts

shell>> python expressions.py
3
hello world

shell>> 10

The Whitespace Thing

▶ Python employs an unusual
convention: it is NOT
whitespace neutral

▶ A Colon (:) plus Indentation
indicates nested elements in
python like the bodies of
functions, loops, conditionals,
class bodies, and other syntatic
elements of the language

▶ Python Zen: Beautiful is better
than ugly.
. . . and apparently {} is ugly

▶ Takes just a little some getting
used to and enforces a more
uniform style than is present in
most other PLs

1 # indent_error.py:
2 # proper indent
3 if 5 > 2:
4 print("5 is bigger")
5 print("that is all")
6 else:
7 print("something is amiss")
8
9 # indentation error

10 if 6 > 2:
11 print("6 is bigger")
12 print("all is well") # !!!
13 else:
14 print("how strange")
15

shell>> python indent_error.py
File "indent_error.py", line 12

print("all is well")
IndentationError: unexpected indent

shell>> pylint indent_error.py
************* Module indent_error
indent_error.py:12:4: E0001: Parsing failed:
'unexpected indent (<unknown>, line 11)' (syntax-error)

11

https://peps.python.org/pep-0020/
https://peps.python.org/pep-0020/

Built-in Data Types

▶ One reason to program in Python is its out-of-the box support
for common data types with built-in syntax

▶ Common tasks in computing benefit greatly from its
“batteries included” approach

▶ NOTE: This course isn’t about data structures, assumes
familiarity with extensible arrays, hash tables, mathematical
sets; if those aren’t in your utility belt, review and play with
them in the REPL

Tour (briefly) datatypes.py to examine some of these

12

Samples of datatypes.py

LISTS: indexed, mutable collections
alist1 = ["a","b","c","c"]
alist2 = [4, "five", 6.7]

numerically indexed
print(alist1[0]) # 'a'
print(alist1[2]) # 'c'
print(alist2[-1]) # 6.7, handy!

alist2[0]=3 # mutable
alist2 = [3, "five", 6.7]
alist1.append("d") # extendable
alist1=["a","b","c","c","d"]

for item in alist1: # iterate
print(item)

####################
TUPLES: indexed, immutable collections
atup1 = (1,2,3) # a tuple
atup2 = (4,"five",6.7)

(x,y,z) = (1,"hi",True) # destructure bind

Examine these and comment on
how this stuff differs from Java

####################
DICTIONARY: key-value mappings
amap1 = {"a":1, "b":2} # dictionary
amap2 = {3:"c", 6.7:True} # e.g. hashmap

print(amap1["b"]) # lookup: 2
amap1["c"] = 3 # new key/val

del amap2[3] # delete key
amap2 = {6.7:True}
amap2.pop(6.7) # delete key
amap2 = {}
amap2.pop(9.9,None) # delete safely

if "a" in amap1: # check for key
print("a is present")

for key in amap1: # iterate
print(key,amap1[key]) # over keys

for key,val in amap1.items(): # iterate
print(key,val) # over key/vals

Also present are basic types (string, Boolean)
and Sets of unique values

13

Modules in Python

▶ Python code divides into modules, typically a collection of
global variables / functions / classes in from the same file

▶ Modules assume the name of their source file
▶ Code from other modules is loaded via import statements
▶ In simplest case, functions are referenced via “dot” syntax

from their module (similar to Java’s conventions)

moduleA.py: creates moduleA
import moduleB # loads moduleB

def main():
...
moduleB.bfunc() # use code from moduleB
...

moduleB.py: creates moduleB
def bfunc():

....

14

Namespaces
▶ Namespace: A collection of unique names grouped together,

usually associated with functions / data in a source file
▶ Programming Environments take differing approaches to

managing name spaces in code
▶ C: one big namespace, all global names must be unique
▶ Java: classes are namespaces, same named functions names

can exist in multiple classes; same named classes must be in
different packages, import some.package.Class;

▶ Python: modules are namespaces, same named functions can
exist in different modules

▶ C++: namespaces are explicit, house all code in one, access
other namespaces via :: syntax, using namespace std
imports members

▶ Python’s module system has lots of nuance (skim) but is
overall serviceable very serviceable

▶ Python import statements also give some control about
naming things

15

https://docs.python.org/3/reference/import.html

import Statement Examples

standard, simple module import
>>> import somelibrary
>>> somelibrary.fibiter(10)
55

rename long module to abbreviation
>>> import somelibrary as sl
>>> sl.fibiter(10)
55

import single (or multiple) elements
>>> from somelibrary import fibiter
>>> fibiter(10)
55

import everything
>>> from somelibrary import *
>>> fibiter(10)
55

16

Python “main()” Functions
▶ Python applications larger than a single file should follow Entry

Point conventions1

▶ import moduleA will execute any top-level code in the module
when it loads

▶ Typically want only top-level definitions of functions and
initialization of module-level (global) variables

▶ If a module has an entry point use this convention:
def afunc(): # normal function

...

def main(): # convention: module entry point
print("In moduleA.main() with __name__",__name__)
... # module __name__ var set at runtime

if __name__ == '__main__': # is module is the "application"?
print("moduleA executable code found; running moduleA.main()")
main()

Demo via moduleA.py
1An entry point is where code starts executing for whole the application;

traditionally the main() function in C but every PL has its own conventions
17

Gotchyas of Module-Level Executable Code

▶ Each import of a module
executes all code in it

▶ If there is output, it will
show on an import

▶ Avoid this or other costly
setup

▶ Demo via modLoud.py and
modSleepy.py

shell>> python
Python 3.11.3

>>> import modLoud
This is why
I don't leave the house
You say the coast is clear
But you won't catch me out

>>> import modSleepy
But I am le tired
Then, have a nap
<delay...>
Now fire!

18

Exercise: Standard Scoping Rules

▶ Below are two code examples
▶ Predict the output of each and explain your reasoning

locals_shadow.py:
avar = 1

def afunc():
avar = 5
print("avar local:",avar)
avar += 1
print("avar local:",avar)

afunc()
print("avar global:",avar)

globscope_fail.py:
theglob = 1 # global variable

def print_theglob(): # print it
print("theglob:",theglob)

def inc_theglob(): # increment it (??)
theglob += 1

print_theglob() # print
inc_theglob() # increment
print_theglob() # print

19

Answers: Standard Scoping Rules
Python has slightly weird variable scoping rules

locals_shadow.py:
avar = 1

def afunc():
avar = 5
print("avar local:",avar)
avar += 1
print("avar local:",avar)

afunc()
print("avar global:",avar)

shell>> python locals_shadow.py
avar local: 5
avar local: 6
avar global: 1

globscope_fail.py:
theglob = 1 # global variable

def print_theglob(): # print it
print("theglob:",theglob)

def inc_theglob(): # increment it (??)
global theglob # uncomment to fix
theglob += 1

print_theglob() # print
inc_theglob() # increment
print_theglob() # print

shell>> python globscope_fail.py
theglob: 1
Traceback (most recent call last):
File "globscope_fail.py", line 16, in <module>
inc_theglob() # increment
^^^^^^^^^^^^^
File "globscope_fail.py", line 13, in inc_theglob
theglob += 1
^^^^^^^
UnboundLocalError: cannot access local variable
'theglob' where it is not associated with a value

20

Unusual Scoping Features: Creating Globals inFunctions

▶ Can create a global from
within a function in Python

▶ Generally this is a bad idea
in large-scale applications

makeglob.py:
def runme():

print("Executing runme()")
global x
x = 5

try:
print("x defined:",x)

except NameError:
print("no x defined")

runme()

try:
print("x defined:",x)

except NameError:
print("no x defined")

demonstration
shell>> python makeglob.py
no x defined
Executing runme()
x defined: 5

21

Python’s Dynamic Symbol Table

▶ Variables are usually defined in
source code but Dynamic
languages bend that convention

▶ Python’s symbol table of defined
variables is a data structure,
accessible and alterable during
runtime

▶ Increased Flexibility: Python progs
can reflect / introspect on
themselves with relative ease

▶ Reduced Performance: most
variable access is via a (series of)
hash table lookup, much worse in
performance than fixed locations
used in non-dynamic environments

add_symbols.py:
def add_symbols(name_vals):

globs = globals()
for k,v in name_vals.items():

globs[k] = v

create globals via runtime
data in a dictionary
add_symbols({"what":"the",

"flip":"!"})

print(what)
print(flip)

demo run
shell>> python add_symbols.py
the
!

22

Object Oriented Programming (OOP) Support
▶ Python is object oriented with support for defining classes
▶ Weirdly, its syntax is somewhat awkward compared to Java

and other OO languages
▶ Opts object arg of methods explicit as self
▶ Uses funky __names__ for constructors, to-string
▶ No declaration of fields

▶ Regrettable, but not matter
▶ Also interesting. . .

▶ All fields of objects public, no private members
▶ Objects are open: can have fields added dynamically

oo_demo.py: demo of classes in python
class MyClass:

i = 12345 # field / instance var

constructor
def __init__(self,first_i):

self.i = first_i

method
def f(self):

return 'hello world'

>>> import oo_demo
>>> mc = oo_demo.MyClass(2)
>>> mc.i
2
>>> from oo_demo import *
>>> mc5 = MyClass(7)
>>> mc5.i
7
>>> mc5.j = 8
>>> mc5.j
8
>>> print(mc5)
<oo_demo.MyClass object at 0x7f98eca99f50>23

Tour of oo_collatz.py

▶ Provided file which demos a semi-interesting class
▶ Makes the Collatz sequence computation more OO-like and

demos many of the features we discussed
▶ Examine: ool_collatz.py

24

Dynamic “Latent” Typing Carries Dangers

▶ Python variables are type free BUT. . .
▶ Values know their type:

▶ "Hello world“~ is a string
▶ 5 is an integer
▶ "5" is a string

▶ If "5" is used as an integer at runtime, likely results in a type
error at Runtime causing the application to crash

>>> x="Hello"
>>> y=5
>>> z="5"
>>> x+z
'Hello5'
>>> x+y
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "int") to str

25

Type Errors: Python Runtime vs Java Compile Time
1 # type_errors.py:
2 msg = input("Message to repeat: ")
3 iters = input("Number of iters: ")
4 # iters = int(input("Number of iters: "))
5 for i in range(iters):
6 print(f"{i}: {msg}")
7
8 # shell>> python type_errors.py
9 # Message to repeat: Hello world!

10 # Number of iters: 5
11 # Traceback (most recent call last):
12 # File "type_errors.py", line 6
13 # for i in range(iters):
14 # ^^^^^^^^^^^^
15 # TypeError: 'str' object cannot be
16 # interpreted as an integer

While small examples like this seem
trivial, imagine a long-running
web-browser in Python crashing due to
a type error which would have been
detected by a compiler in other PLs.
Dynamic PLs often rely on Software
Tests to ferret out this kind of bug
with varying degrees of success before
release.

1 // Type_Errors.java:
2 import java.util.Scanner;
3 public class Type_Errors{
4 public static void main(String ars[]){
5 Scanner in = new Scanner(System.in);
6 System.out.print("Message to repeat: ");
7 String msg = in.nextLine();
8 System.out.print("Number of repeats: ");
9 String iters = in.nextInt(); // Error

10 // int iters = in.nextInt(); // Correct
11
12 for(int i=0; i<iters; i++){
13 System.out.println(msg);
14 }
15 }
16 }
17
18 // shell>> javac Type_Errors.java
19 // Type_Errors.java:15: error:
20 // incompatible types: int cannot be converted
21 // to String
22 // String iters = in.nextInt(); // Error
23 // ^
24 // Type_Errors.java:18: error:
25 // bad operand types for binary operator '<'
26 // for(int i=0; i<iters; i++){
27 // ^
28 // first type: int
29 // second type: String
30 // 2 errors 26

Name Errors

In addition to Python also yields runtime errors for inadvertent
misspellings
>>> msg = "Hello world!"
>>>
>>> print(mesg)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'mesg' is not defined.

Did you mean: 'msg'?

These do not happen in PLs with stricter checking

27

