CMSC330: Python Basics

Chris Kauffman

Last Updated:
Mon Sep 4 12:21:11 PM EDT 2023

Logistics

Reading

The Python Tutorial:
https://docs.python.org/3/tutorial/index.html

» Skim, skip around, experiment
» Any other python reference should be good too
» lIdea is to get a quick high level understanding

Goals
» Understand basic syntax of Python
» Relate Python to Java

> Identify imperative nature of both Languages

https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html

Python

>

>

>

Development started in late 1980s
Version 2 released in 2000, fairly recognizable

Version 3 released in 2008, was NOT backwards
compatible
print "Hello" # version 2

print("Hello") # version 3

Created a vast schism; still some version 2 code in
use out there today

» “Fun” to program in: do a lot with few lines of code

» Relatively straight-forward to interface with C

» Often used as an intro language due to its friendly

looking syntax (both my old university did and UMD
is rumored to be looking to try Python in 131)

Wildly popular in all realms of computing from web
frameworks to machine learning / data science to
robotics, great to have on your resume

Python’s Primary
author is Dutch
coder Guido von
Rossum, dubbed
“Benevolent
dictator for life”
by the
development
community.

Every Programming Language

Look for the following as it should almost always be there

O

I I 0 o

Comments

Statements/Expressions

Variable Types

Assignment

Basic Input/Output (printing and reading)
Function Declarations

Conditionals (if-else)

Iteration (loops)

Aggregate data (arrays, records, objects, etc)
Library System

Exercise: Collatz Computation An Introductory Example

» collatz.py prompts for an integer and computes the Collatz
Sequence starting there

» The current number is updated to the next in the sequence via
if cur is EVEN cur=cur/2; else cur=cur*3+1

» This process is repeated until it converges to 1 (mysteriously)
or the maximum iteration count is reached

» The code demonstrates a variety of Python features and
makes for a great crash course intro

» With a neighbor, study this code and identify the features you
should look for in every programming language

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Exercise: Collatz Computation An Introductory Example

21
22
23
24
25
26

collatz.py: collatz computation

verbose = True # global var
def collatz(start,maxsteps): # function
cur = start
step = 0

if verbose:
print("start:",start, "maxsteps:",maxsteps)
print("Step Current")
print(f"{step:3}: {cur:5}")
while cur != 1 and step < maxsteps:
step += 1
if cur 7 2 == 0:
cur = cur // 2
else:
cur = cur*3 + 1
if verbose:
print (f"{step:3}: {cur:5}")
return (cur,step)

executable code at global scope
start_str = input("Collatz start val:\n")
start = int(start_str)

(final,steps) = collatz(start, 500)
print (f"Reached {finall} after {steps} iters")

Look for... Comments,
Statements/Expressions,
Variable Types, Assignment,
Basic Input/Output, Function
Declarations, Conditionals,
Iteration, Aggregate Data,
Library System

>> python collatz.py
Collatz start val:

10

start: 10 maxsteps: 500
Step Current

0: 10
1: 5
2: 16
3: 8
4: 4
5: 2
6: 1

Reached 1 after 6 iters

Answers: Collatz Computation An Introductory Example

X
X

X X

0 X XK

O

Comments: # comment to end of line
Statements/Expressions: written plainly, no semicolons, stuff
like a+b or n+=2 is old hat; Boolean expressions available via
x and y implicating z or w is likely around

Variable Types: string, integer, boolean are obvious as values,
no type names mentioned save the conversion from string to
integer via the int (str) function

Assignment: via somevar = avalue

Basic Input/Output (printing and reading): print() /
input ()

Function Declarations: def funcname(paraml,param?2) :
Conditionals (if-else): if cond: and else:, also elif:
Iteration (loops): clearly while cond:, others soon

Aggregate data (arrays, records, objects, etc):
(python,has,tuples) and others we'll discuss soon

Library System: soon

A Few Oddities

» Python has two division operators a / b for floating point
division, a // b for integer division. Dynamic types make this
easy to forget and likely to cause errors

>>> 11/ 3 # float div
3.6666666666666665

>>> 11 // 3 # int div

3

>> 11.99 / 3.99 # float div
3.0050125313283207

>>> 11.99 // 3.99 # what now?
3.0

» Python has several means of formatted output; we'll favor
print ("substitue x: {} and y: {}".format(x,y)) # older, position subs
print(f"substitue x: {x} and y: {y}") # newer, symbolic subs
= f for format

REPL: Read-Evaluate-Print Loop
» Python features a REPL to interactively interpret Python
statements on the fly
» Allows for easy experimentation and testing of code

» REPLs appear in many forms, are closely associated with

Dynamic languages (like command line shells)
shell>> python

Python 3.11.3 (main, Jun 5 2023, 09:32:32) [GCC 13.1.1 20230429] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> 142
3

>>> "hello" + " world"
'hello world'

>>> x=1+2

>>> s="hello" + " world"
>>> print(x)

3

>>> print(s)

hello world

>>> exit()

shell>>

Python Runs as a “Scripting” Language

» “Scripting Language” is a loose term associated with PLs that
favor short programs in text files that are run through an

interpreter program,

in this case python

» Examples include Python (caveats), Javascript, Shell Scripts,
Awk, Lua, Perl TCL, and myriad others

» Usually programs are directly executed by their interpreter by
reading some statements, executing, reading more statements,

executing, etc. (e.g.

shell>> cat expressions.py

1+2 #
"hello" + " world" #
x=1+2 #
s="hello" + " world" #
print (x) #
print(s) #

shell>> python expressions.

3
hello world

shell>>

NOT compiled to a lower form)

expressions output in the REPL
but not in scripts

assignment has no output
in the REPL or as scripts

print() producees output in
REPL and in scripts

Py

10

The Whitespace Thing

indent_error.py:

proper indent

if 5 > 2:
print("5 is bigger")
print("that is all")

else:
print("something is amiss")

» Python employs an unusual
convention: it is NOT
whitespace neutral

> A Colon (:) plus Indentation
indicates nested elements in
python like the bodies of PR
. " i > 2:
functlons,. loops, condltlonals,. 11 print("6 is bigger")
class bodies, and other syntatic 12 print("all is well") # !!!

elements of the language 13 else:
14 print("how strange")

» Python Zen: Beautiful is better 15

than ugly. shell>> python indent_error.py
File "indent_error.py", line 12
print("all is well")
IndentationError: unexpected indent

indentation error

-
O © 00 N O O WN

...and apparently {} is ugly

» Takes just a little some getting
used to and enforces a more shell>> pylint indent_error.py

uniform style than is present in Frbrkrkiokek Module indent_error
most other PLs indent_error.py:12:4: E0001: Parsing fail

'unexpected indent (<unknown>, line 11)'

11

https://peps.python.org/pep-0020/
https://peps.python.org/pep-0020/

Built-in Data Types

» One reason to program in Python is its out-of-the box support
for common data types with built-in syntax

» Common tasks in computing benefit greatly from its
“batteries included” approach

» NOTE: This course isn't about data structures, assumes
familiarity with extensible arrays, hash tables, mathematical
sets; if those aren’t in your utility belt, review and play with
them in the REPL

Tour (briefly) datatypes.py to examine some of these

12

Samples of datatypes.py

LISTS: indexed, mutable collections

alistl = ["a","b","c","c"] # DICTIONARY: key-value mappings
alist2 = [4, "five", 6.7] amapl = {"a":1, "b":2} # dictionary

amap2 = {3:"c", 6.7:True} # e.g. hashmap
numerically indexed
print(alist1[0]) # 'a' print (amap1["b"]) # lookup: 2
print(alist1[2]) # 'c' amapl["c"] = 3 # new key/val
print(alist2[-1]) # 6.7, handy!

del amap2[3] # delete key
alist2[0]=3 # mutable # amap2 = {6.7:True}
alist2 = [3, "five", 6.7] amap2.pop(6.7) # delete key
alistl.append("d") # extendable # amap2 = {}
alisti=["a","b","c","c","d"] amap2.pop(9.9,None) # delete safely
for item in alistl: # iterate if "a" in amapl: # check for key

print(item) print("a is present")

for key in amapl: # iterate
TUPLES: indexed, immutable collections print (key,amap1 [key]) # over keys
atupl = (1,2,3) # a tuple
atup2 = (4,"five",6.7) for key,val in amapl.items(): # iterate

print (key,val) # over key/vals

(x,y,2z) = (1,"hi",True) # destructure bind

Also present are basic types (string, Boolean)

Examine these and comment on and Sets of unique values

how this stuff differs from Java
13

Modules in Python

» Python code divides into modules, typically a collection of
global variables / functions / classes in from the same file

» Modules assume the name of their source file
» Code from other modules is loaded via import statements

» In simplest case, functions are referenced via “dot” syntax
from their module (similar to Java's conventions)

moduleA.py: creates moduleA # moduleB.py: creates moduleB
import moduleB # loads moduleB def bfunc():

def main():

moduleB.bfunc() # use code from moduleB

14

Namespaces

» Namespace: A collection of unique names grouped together,
usually associated with functions / data in a source file
» Programming Environments take differing approaches to
managing name spaces in code
» C: one big namespace, all global names must be unique
» Java: classes are namespaces, same named functions names
can exist in multiple classes; same named classes must be in
different packages, import some.package.Class;
» Python: modules are namespaces, same named functions can
exist in different modules
» C++: namespaces are explicit, house all code in one, access
other namespaces via :: syntax, using namespace std
imports members

» Python’s module system has lots of nuance (skim) but is
overall serviceable very serviceable

» Python import statements also give some control about
naming things

15

https://docs.python.org/3/reference/import.html

import Statement Examples

standard, simple module import
>>> import somelibrary

>>> somelibrary.fibiter(10)

55

rename long module to abbreviation
>>> import somelibrary as sl

>>> sl.fibiter(10)

55

import single (or multiple) elements
>>> from somelibrary import fibiter
>>> fibiter(10)

55

import everything

>>> from somelibrary import *
>>> fibiter(10)

55

16

Python “main()” Functions

» Python applications larger than a single file should follow Entry
Point conventions!

» import moduleA will execute any top-level code in the module
when it loads

» Typically want only top-level definitions of functions and
initialization of module-level (global) variables

» |f a module has an entry point use this convention:

def afunc(): # normal function
def main(): # convention: module entry point
print("In moduleA.main() with __name__",__name__)

module __name__ var set at runtime

if __name__ == '__main__"': # is module is the "application"?
print("moduleA executable code found; running moduleA.main()")

main()

Demo via moduleA.py

LAn entry point is where code starts executing for whole the application;

traditionally the main() function in C but every PL has its own conventions
7

Gotchyas of Module-Level Executable Code

» Each import of a module
executes all code in it

» If there is output, it will
show on an import

» Avoid this or other costly
setup

» Demo via modLoud.py and
modSleepy.py

shell>> python
Python 3.11.3

>>> import modLoud

This is why

I don't leave the house
You say the coast is clear
But you won't catch me out

>>> import modSleepy
But I am le tired
Then, have a nap
<delay...>

Now fire!

18

Exercise: Standard Scoping Rules

» Below are two code examples

» Predict the output of each and explain your reasoning

locals_shadow.py:
avar = 1

def afunc():
avar = 5
print("avar local:",avar)
avar += 1
print("avar local:",avar)

afunc()
print ("avar global:",avar)

globscope_fail.py:
theglob = 1

def print_theglob():
print ("theglob:",theglob)

def inc_theglob():
theglob += 1

print_theglob()
inc_theglob()
print_theglob()

**

H

global variable

print it

increment it (?7)

print
increment
print

19

Answers: Standard Scoping Rules
Python has slightly weird variable scoping rules

locals_shadow.py: # globscope_fail.py:
avar = 1 theglob = 1 # global variable
def afunc(): def print_theglob(): # print it
avar = 5 print ("theglob:",theglob)
print("avar local:",avar)
avar += 1 def inc_theglob(): # increment it (?77)
print("avar local:",avar) # global theglob # uncomment to fix
theglob += 1
afunc()
print("avar global:",avar) print_theglob() # print
inc_theglob() # increment
shell>> python locals_shadow.py print_theglob() # print

#

avar local: 5
avar local: 6
avar global: 1

shell>> python globscope_fail.py

theglob: 1

Traceback (most recent call last):

File "globscope_fail.py", line 16, in <module>
inc_theglob() # increment

~rmrmmmAmanan

File "globscope_fail.py", line 13, in inc_theglob
theglob += 1

P -

UnboundLocalError: cannot access local variable

'theglob' where it is not associated with a value

Unusual Scoping Features:

» Can create a global from
within a function in Python

» Generally this is a bad idea
in large-scale applications

Creating Globals inFunctions

makeglob.py:
def runme():
print ("Executing runme()")

global x
x =5
try:

print("x defined:",x)
except NameError:
print("no x defined")

runme ()

try:
print("x defined:",x)
except NameError:
print("no x defined")

demonstration

shell>> python makeglob.py
no x defined

Executing runme ()

x defined: 5

21

Python's Dynamic Symbol Table

» Variables are usually defined in

source code but Dynamic # add_symbols.py:

languages bend that convention def add_symbols(name_vals):
. globs = globals()
» Python’s symbol table of defined for k,v in name_vals.items():
. . lobs[k] =
variables is a data structure, globslk] = v
accessible and alterable during # create globals via runtime
runtime # data in a dictionary

add_symbols ({"what":"the",
» Increased Flexibility: Python progs "Eliptitith)
can reflect / introspect on print (what)

themselves with relative ease print(flip)

» Reduced Performance: most
. . . . # demo run
variable access is via a (series 01.‘) chell>> python add_symbols.py
hash table lookup, much worse in the
. . [}
performance than fixed locations '
used in non-dynamic environments

Object Oriented Programming (OOP) Support

» Python is object oriented with support for defining classes
» Weirdly, its syntax is somewhat awkward compared to Java
and other OO languages
> Opts object arg of methods explicit as self
» Uses funky __names__ for constructors, to-string
» No declaration of fields
> Regrettable, but not matter
> Also interesting. ..
> All fields of objects public, no private members
» Objects are open: can have fields added dynamically

oo_demo.py: demo of classes in python >>> import oo_demo

class MyClass: >>> mc = oo_demo.MyClass(2)
i = 12345 # field / instance var >>> mc.i
2
constructor >>> from oo_demo import *
def __init__(self,first_i): >>> mchb = MyClass(7)
self.i = first_i >>> mch.i
7
method >>> mch.j = 8
def f(self): >>> mcb. j
return 'hello world' 8

>>> print(mc5)
<oo_demo.MyClass object at 0x7£98eca99 3

Tour of co_collatz.py

» Provided file which demos a semi-interesting class

» Makes the Collatz sequence computation more OO-like and
demos many of the features we discussed

> Examine: ool_collatz.py

24

Dynamic “Latent” Typing Carries Dangers

» Python variables are type free BUT. ..
» Values know their type:

> "Hello world'~ is a string
> 5 is an integer
> "5" is a string

> If "5" is used as an integer at runtime, likely results in a type

error at Runtime causing the application to crash

>>> x="Hello"
>>> y=5
>>> z="5"
>>> x+z
'Hello5'
>>> x+y
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "int") to str

25

Type Errors: Python Runtime vs Java Compile Time

1 # type_errors.py: 1 // Type_Errors.java:
2 msg = input("Message to repeat: ") 2 import java.util.Scanner;
3 iters = input("Number of iters: ") 3 public class Type_Errors{
4 # iters = int(input("Number of iters: ")) 4 public static void main(String ars[]){
5 for i in range(iters): 5 Scanner in = new Scanner(System.in);
6 print(£"{i}: {msgl}") 6 System.out.print ("Message to repeat: ");
7 7 String msg = in.nextLine();
8 # shell>> python type_errors.py 8 System.out.print ("Number of repeats: ");
9 # Message to repeat: Hello world! 9 String iters = in.nextInt(); // Error
10 # Number of iters: 5 10 // int iters = in.nextInt(); // Correct
11 # Traceback (most recent call last): 11
12 # File "type_errors.py", line 6 12 for(int i=0; i<iters; i++){
13 # for i in range(iters): 13 System.out.println(msg);
“9# TToTmTmmTmen 14 }
156 # TypeError: 'str' object cannot be 15}
16 # interpreted as an integer 16 }
. . . 17
While small examples like this seem 18 // shell>> javac Type_Errors.java
trivial, imagine a Iong-running 19 // Type_Errors.java:15: error:
web-browser in Python crashing due to 2(1) x incompatible types: i’;tsiili’zzt be converted
a type error which would have been 22 // String iters = in.nextInt(); // Error
detected by a compiler in other PLs. 22 ; ; e B et .
. 2. e Irrors.java: . error:
Dynam/c PLs often rely on Software 25 // bzg operand éypes for binary operator '<'
Tests to ferret out this kind of bug 2 // for(int i=0; i<iters; i++){

with varying degrees of success before 27 //)
28 // first type: int

release. 29 // second type: String
30 // 2 errors 26

Name Errors

In addition to Python also yields runtime errors for inadvertent

misspellings
>>> msg = "Hello world!"
>>>

>>> print (mesg)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'mesg' is not defined.
Did you mean: 'msg'?

These do not happen in PLs with stricter checking

27

