
CMSC330: Introduction

Chris Kauffman

Last Updated:
Tue Aug 29 09:15:05 AM EDT 2023

1

Logistics
Slides: https://kauffman77.github.io/330/

Introductions
CMSC330 Sec 3xx Prof TBA = Prof Kauffman
▶ kauffman77@gmail.com for now
▶ Office Hours Tue/Wed 1-2pm in IRB2226

All CMSC330 Sections Coordinated
▶ Our section will remain in sync with 1xx/2xx sections
▶ Same Syllabus, HW, Quiz/Exam Schedules

Reading: None

Goals
▶ Get The Lay of the PL Landscape
▶ Survey the course content and structures
▶ Sample Course Structure / Mechanics 2

https://kauffman77.github.io/330/

Functional

Imperative

Sta
tic

Closure
OCaml

PythonJav
a

Rac
ket

C, C
++,

 C#
D,

Rus
t, J

uli
a Ruby, R

Javascript, Lua

Haskell, SML, F#

Prolog Sch
em

e, C
loju

re
Lisp

CMSC 330
Co

m
pi

le Eval

Object
Dynam

ic

3

Organization of Diagram

Typing Discipline (Horizontal Axis)
Static Typing : Variables are bound to the same type of data over
their lifetime
Dynamic Typing : Variables may be bound to data of differing
types over their lifetime

Mutability of Data (Vertical Axis)
Imperative Paradigm : Emphasize variables with values that
change variables change over time, reflect the nature of the Turing
Machine
Functional Paradigm : Favor immutable data, bindings to values
are fixed but new versions may be created, reflect the nature of the
Lambda Calculus

4

Cross-Cutting Concerns for PLs
Built-in Data Does the PL feature built-in data types like arrays,

linked lists, sets, and maps (e.g. hash tables)? Is
there a handy syntax to use these?

Code Organization How does the PL allow code to be divided into
modules and expose some/all of their contents? e.g.
Names and their Namespaces

Translation Model Does the PL support ahead of time
compilation to some lower form or piece-by-piece
interpretation? Or does it does it support
something in between?

Dynamic Execution Does the language allow execution of new,
unknown code at runtime? The creation of new code
within the current program?

Abstraction Facilities How does the PL allow for patterns and
ideas to be encoded? Can its syntax be extended?

Object Orientedness Does the PL support OO programming, in
whole or part?

5

Exercise: Object Orientendness of Languages

▶ CMSC330 students should have at least 3 semesters of college
coding courses such as CMSC131, 132, and 216

▶ Undoubtedly you’ll have been exposed to Object Oriented
Programming, a style of programming popularized during
1990s and still prevalent today

Consider:
1. Name an OO language you have used and whether like it
2. What makes that or any Language object-oriented?
3. What makes a Program object-oriented, irrespective of PL?
4. What is Object Oriented Programming exactly?

Chat up your neighbors, consider some ideas, we’ll regroup and
share together momentarily.
A few folks that share answers will be granted a small amount of
bonus credit at the end of the semester

6

Answers: Object-Orientendness of Languages 1/3
1. Name an OO language you have used and whether like it

Java will be the most common for UMD students. Python,
C++, and Javascript / ECMAScript are also common for
those starting out.

2. What makes that or any Language object-oriented?
Typically has features that ease the creation of object
oriented programs. Examples include built-in syntax for
classes, inheritance, and dynamic dispatch.
Dynamic dispatch is automatically selecting and execut-
ing one of several versions of a function based on they type
of the data passed as a parameter.
HOWEVER methods and dynamic dispatch are not unique
to OO programs. Languages like Java, C++, and
Python support single dynamic dispatch with syntax like
animal.speak(msg). We may look at other languages
that support multiple dynamic dispatch such as Racket,
Clojure, and Julia, none of which are object-oriented.

7

Answers: Object-Orientendness of Languages 2/3
3. What makes a Program object-oriented, irrespective of PL?

Typically models its domain by dividing it into classes and
defining methods that act on those classes. However ALL
sensible programs. . .
▶ Define data types for their domain
▶ Define functions that act on those data types
▶ Hide aspects of implementation through abstractions to

allow future flexibility
▶ Establish general-case functionality that can be re-used

and adapted to expand and handle new situations
So, these are NOT OO in their own right.
Use of class hierarchies with inheritance are the most
likely features to make a Program OO though opinions
vary on the wisdom of using classes inheritance.1 However,
hierarchical data types are not unique to OO programs.

1Noted OO writer Allen Holub has an article on the difficulties of class
hierarchies. He mentions that even James Gosling, the primary author of Java,
indicated he would leave out inheritance if allowed to re-design Java.

8

https://www.infoworld.com/article/2073649/why-extends-is-evil.html

Answers: Object-Orientendness of Languages 3/3

4. What is Object-Oriented Programming exactly?
If you ever figure this out, let me know as I’m at year
20 of investigating and don’t yet have a more satisfactory
answer than “buzz word”.

Several of the languages we will discuss support Object-Oriented
styles of programming. We will touch on these a little going
forward but also describe alternatives to the Kingdom of Nouns.

9

http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html

The 4 Exemplars: Imperative Players
Java

▶ Imperative (mostly)
▶ Statically typed (mostly)
▶ Object-Oriented

(questionably)
▶ Ubiquitous in industry
▶ Covered in prereq courses,

used as a comparison point
for others

If I have to write public static void
main()... one more time I’m gonna
puke

Python

▶ Imperative (mostly)
▶ Dynamically typed (and

regretting it)
▶ Object-Oriented

(haphazardly)
▶ Widely used in everything

from data science to
robotics to back end
development

▶ Covered early in course, a
great resume padder

Prepare for self -loathing. (see)
10

https://docs.python.org/3/tutorial/classes.html#class-objects

The 4 Examplars: Functional Players
OCaml

▶ Functional (but not rigidly)
▶ Statically typed (rigidly)
▶ Can be OO, but not

necessarily so
(Objective-CAML)

▶ Not widely used but its ML
family has inspired many
newer languages

▶ Covered midway through
course

Because it’s French, none of the
controls are in the usual places. (src)

Racket

▶ Functional (but not rigidly)
▶ Dynamically typed (default)
▶ Can be OO, but not

necessarily so (require
racket/class)

▶ Of the LISP family,
understood by few, imitated
by all

▶ Covered near end of course
These are your father’s parens, elegant
weapons from a more civilized time.
(src)

11

https://gebo13.livejournal.com/7055.html
https://xkcd.com/297/

Exercise: Exemplars Sum 1 to 10, Imperative Style
▶ Each produces the output x is 50
▶ Examine the code with some neighbors; identify similarities

and differences
▶ What technique is used to produce the output in each case?

1 // SumLoop.java: Java
2 // statically typed, imperative
3 public class SumLoop {
4 public static void main(String args[]){
5 int x = 0;
6 for(int i=1; i<=10; i++){
7 x = x+i;
8 }
9 System.out.printf("x is %d\n",x);

10 }
11 }

1 # sumloop.py: Python
2 # dynamically typed, imperative
3 x = 0
4 for i in range(1,11):
5 x = x+i
6 print("x is {}".format(x))

1 (* sumloop.ml: OCaml
2 statically typed, functional *)
3 let _ =
4 let x = ref 0 in
5 for i=1 to 10 do
6 x := !x + i;
7 done;
8 Printf.printf "x is %d\n" !x;

1 ;; sumloop.rkt: Racket
2 ;; dynamically typed, functional
3 #lang racket/base
4 (define x 0)
5 (for ([i 11])
6 (set! x (+ x i)))
7 (printf "x is ~v\n" x)

12

Answers: Exemplars Sum 1 to 10, Imperative Style
A few things you might observe aside from syntax differences
▶ Java and Python use the familiar x = ... to assign new

values to x while OCaml and Racket are a bit different
▶ Despite OCaml being labeled statically typed there are no

types like int listed in the program; interesting. . .
▶ Only Java uses curly braces for constructs; the others have

alternatives; Java also requires a surrounding class to be used
▶ Each language uses formatted output to create a string with

variable values substituted in; hopefully you’ve seen printf()
before and are a bit familiar with this idea as it will recur

Codes are in today’s codepack: 01-introduction-code.zip
linked next to lecture slides. It’s probably a good idea to. . .
▶ Download the codepack and poke around
▶ Set up your environment so that you can execute each code

(this is the essence of Project 0)
13

Rust: The Kid Sibling PL
▶ Covered at 2/3 point in Course
▶ General purpose programming

environment combining aspects of
OCaml/ML and C

▶ Programs adhere to a complex set
of rules on data ownership that
allow Compiler to recoup memory
automatically, prevent certain
errors, and execute code with
reasonable efficiency without
garbage collection

▶ Originated at Mozilla, first release
in 2015, experimental support
within Linux Kernel for Drivers

1 // sumloop.rs
2 fn main() {
3 let mut x = 0;
4 for i in 1..11 {
5 x = x+i;
6 }
7 print!("x is {}\n",x);
8 }

Rust is named after a
fungus. It only gets worse
from there.
Rustlings want Rust to replace
C for systems programming. C
programmers are presently
pushing aside the dead husks of
past PLs that have tried and
failed to unseat C so they can
see what Rust has on offer. 14

Underlying Theory and Technologies of PL

All of these PLs suck. I will make the One PL to rule them
all, and in the darkness bind them. Though I don’t know
the way. . .

While examining attributes of programming languages, we’ll also
explore underlying theory and technique tied to PLs including. . .

15

PL Theory/Tech: Finite State Machines

Models how formal languages
can be recognized, used to build
implementations of regular
expressions. Variants include
▶ Non-deterministic Finite

Automata: smaller but
require backtracking

▶ Deterministic Finite
Automata: larger but no
backtracking req’d

Study the theory of these and
how they are used to create code
for language processing

Regular Language

A = (0|1)*1(0|1)(0|1)

NFA Recognizing A

q1 q2 q3 q4

0,1

1 0,1 0,1

DFA Recognizing A

q000 q100 q010 q110

q001 q101 q011 q111

1

0

0

1

0

1

0

10

1

0

1

0

1

0

1

16

PL Theory/Tech: Regular Expressions
The tool of choice for complex string matching and replacement.
An underlying theory and a mini-language in every PL worth its
salt. Indispensable in editors, on the command line, and in
language processing.

17

PL Theory/Tech: Lexing and Parsing
▶ Processing the raw input text of a program into a data

structure that can be either directly interpreted or compiled to
some other form like Assembly Language

▶ Can hand-roll code for this but tools in the vein of Lex /
YACC automate the process and are available for a variety of
PLs allowing one to build mini-languages

>> ocaml
OCaml version 5.0.0
#load "langproc.cmo";;
open Langproc;;
let l = lex_string "(1+2) * (3+4+5)";;
l : Langproc.token list =
[OParen; Int 1; Plus; Int 2;
CParen; Times; OParen;
Int 3; Plus; Int 4; Plus;
Int 5; CParen]

parse_tokens l;;
- : Langproc.expr =
Mul (Add (Const 1, Const 2),

Add (Const 3, Add (Const 4,
Const 5)))

Mul

Add

Const 1 Const 2

Add

Const 3 Add

Const 4 Const 5

18

PL Theory/Tech: The Lambda Calculus
▶ A theory of computation equivalent in power to Turing

Machines
▶ The basis for functional PLs like Racket, Scheme, Lisp,

OCaml, ML, etc.
▶ There’s an Untyped Lambda Calculus and a bunch of Typed

Lambda Calculi
▶ You can probably guess which one inspired dynamically and

statically typed functional PLs
▶ It’s source of all those pesky lambda’s that show up in PLs.

The Church Encoding for Pairs in Lambda Calculus
PAIR :=λx.λy.λf.fxy

FIRST :=λp.pTRUE
SECOND :=λp.pFALSE

NIL :=λx.TRUE
NULL :=λp.p(λx.λy.FALSE)

19

Why Study Programming Languages?

If the only tool you have
is a hammer, it is tempt-
ing to treat everything
as if it were a nail.
– Abraham Maslow

▶ Programming Languages are
Tools made by people for
people to do computations

▶ Tools have trade-offs, are
better at some jobs and
worse at others

▶ Hackers hammer everything
they see and justify it by
loudly proclaiming their
hammer as the superior tool

▶ Wizards skip the debate,
quietly select the appropriate
tool among their many
options, get the job done
faster, and go home early

▶ Strive to be a Wizard
20

https://en.wikipedia.org/wiki/Law_of_the_instrument

Course Structure

Perc Element Notes
40% 8 Projects Individual work; credit varies

per project complexity
24% 2 Midterm Exams In lecture on posted dates
22% Final Exam Common Exam w/ other sections
10% 4 Discussion Quizzes In discussion on posted dates
4% Lecture quizzes Planned weekly, online
2% Bonus Credit For participation in Lec/Disc

▶ 4xx Lectures will be recorded and made available via
ELMS/Canvas links (as soon as Kauffman can get on Canvas)

▶ Lecture slides/codepacks will be posted and linked from the
course website

21

In-Class Participation for Bonus Credit

▶ If you engaged with lecture or discussion by offering an answer
to an in-class system or asked an interesting question, come
up at the end of the class

▶ Find your name or add it to one of the sheets
▶ Fill in 1 “Dot” per engagement
▶ More dots means more Overall Bonus Credit
▶ Lecture / Discussion sections will combine participation for

this score, maxes out around 2% of overall grade
Bonus = log2(1 + LecDots + DiscDots)/2.5

22

Course Web Site

https://bakalian.cs.umd.edu/330
▶ Links for Syllabus, Staff Contact, Official Schedule
▶ Links to Project descriptions, intial code repos, etc

https://kauffman77.github.io/330/
▶ 4xx Lecture Materials
▶ Slides and Code and other goodies

23

https://bakalian.cs.umd.edu/330
https://kauffman77.github.io/330/

Expectations
Kauffman can
▶ Provide guidance, entertainment, information, challenge
▶ Will do all of those in lecture, office hours, assignments, exams

Kauffman cannot
▶ Force you to pay attention, do your HW, attend classes, ask

when you don’t know, practice, learn.
▶ Cannot force you to CARE, the critical factor in any endeavor.
▶ Caring leads to effort. Effort leads to improvement.

Constant improvement leads to success.

Kauffman’s Expectation
▶ You care at least a little bit and will cultivate an attitude of

curiosity and engagement
▶ You will put some effort into our time together as I have

24

Don’t Give Up, Stay Determined!

Students have different experience levels. Some have lots and make
things look easy. For others, everything is new and intimidating. No one
knows all of this stuff. Everyone struggles at some point. Get help from
the staff. Support each other. Your peers will remember when you help
them move forward and when you try to hold them back.

Respect and learn from one another.
25

More DOTS Now!

▶ If you gave an answer during lecture or asked an interesting
question. . .

▶ Come to the front of the room
▶ Add your name
▶ Give yourself a Dot
▶ Come back next time for more Dots

26

