CMSC216: Bonus Review 2A

Chris Kauffman

Last Updated:
Sun Nov 2 09:41:43 PM EST 2025

Bonus
>

>

Review Rules

3 Questions will be shown with about 5min per question,

15min total, time limit enforced on Gradescope Quiz

Individual student bonus dots will be calculated as

BonusDots = floor(log2(TotalCorrectSectionAnswers))
- YourIncorrectAnswers

Cooperation is allowed and encouraged within your discussion

section: the more correct answers in the section, the more

bonus points for all

Staff will try to facilitate discussion but will not comment on

correct/incorrect answers during the quiz

Scores will posted after all sections have taken the done the

bonus review, likely the following day

Student in the Discussion Section with the highest

TotalCorrectSectionAnswers will get +2 BonusDots

Bonus Review is Open Resource just like the exam:

https://www.cs.umd.edu/~profk/216/exam-rules.pdf

https://www.cs.umd.edu/~profk/216/exam-rules.pdf

Staging

» Open up the Gradescope Bonus Review Quiz for the day
» Once started, the quiz closes after 15min

» Get your resources set for the quiz

Okay...

5,2,]

Let’s Jam!

Question 1

1 int quotient_greater(int numer, L .global quotient_greater
. 2 quotient_greater:
2 int denom, 3 1 Yedi, Y
3 int thresh) mov. sedi, heax
4 { 4 cltq
5 int quot = numer / denom; 5 sqi?o o .
. 6 idivl Yesi
6 if (quot > thresh){ o Y
7 return 1: 7 cmpl %hedx, ‘%heax
s 3 ’ 8 jle .ABOVE
o
P sised oo e
10 return O;
1 } ’ 11 .ABOVE:
12 movl $0, %eax
12 }
13 ret

Above is a correct C function and a BUGGY assembly implementation. Which
of the below best describes the problem in assembly and its fix?

> (A) Sign extension in preparation for the division is not correct; add a
cwtl first.

» (B) The argument registers are used incorrectly; change the first line to
movl (%edi),’%eax

» (C) The %esi register cannot be used in division; copy %esi to a different
register and use that one in division.

» (D) The argument in %edx is changed during division; copy %edx to a
different register early then compare against that one later.

Question 2

Consider this struct and function
prototype.

// packed_struct_main.c
typedef struct {

short first;

short second;
} twoshort_t;

short sub_struct(twoshort_t ti);

Which of the nearby instruction
sequences will set the DX-family
register to be the value of ti.second if
placed at beginning sub_struct()?

sub_struct:

(A) edx = ti.second;
movq %rdi, %rdx

sarl $8, %edx

andl $0xFF, %edx

(B) edx = ti.second;
movl %edi, Jedx

sall $16, %edx

andl $0xFFFF, %edx

(C) edx = ti.second;
movl %edi, Y%edx

sarl $16, %edx

andl $0xFFFF, %edx

(D) edx = ti.second;
movl $0, %edx
movw 2(%rdi), %dx

(E) edx = ti.second;
movzwq (%rdi), %dx

(F) edx = ti.second;
xorq %rdx,%rdx
movswq 2(%rdi), %dx

Question 3

==4012== Jump to the invalid address stated on the next line

==4012== at 0x1320D48: 777

==4012== by 0x4003F48: CALL_batt_update (test_batt_update_asm.s:227)
==4012== by 0x4003733: main (test_batt_update.c:668)

==4012== Address 0x1320d48 is not stack'd, malloc'd or (recently) free'd
==4012==

==4012== Process terminating with default action of signal 11 (SIGSEGV)

Which of the following is a likely cause and fix for the above error in Project 3’s

>

batt_update() function?

(A) Incorrectly accessing an array location; FIX by adjusting the scaling factor
on an instruction of the form

(%regl, %reg2, scale)
(B) Incorrect movement size causing data to be read or written that is out of
bounds; FIX by adjusting an instruction suffix to select one of q/1/w/b that is
appropriate to the C data type
(C) Use of a callee-save register that is not properly restored before returning.
FIX by adding a pushgq instruction at the beginning of the function to save the
register and a popq instruction to restore it before returning.
(D) Failure to restore the stack pointer to its original value before returning;
FIX by finding the return statement that triggered the problem and using addq
/ popq instructions to restore the stack to its original state.
(E) Improper stack alignment to set up a function call. FIX by adjusting the
stack pointer near the beginning of a function with a subq instruction to ensure
16-byte alignment accounting for the 8-byte return address on the stack already.
(F) Incorrect syntax to access a global variable. FIX by adjusting a line like
movl myglobal, %eax TO movl myglobal(¥%rip), %eax
which uses PC-relative addressing

