
CMSC216: Bonus Review 2A

Chris Kauffman

Last Updated:
Sun Nov 2 09:41:43 PM EST 2025

1

Bonus Review Rules
▶ 3 Questions will be shown with about 5min per question,

15min total, time limit enforced on Gradescope Quiz
▶ Individual student bonus dots will be calculated as

BonusDots = floor(log2(TotalCorrectSectionAnswers))
- YourIncorrectAnswers

▶ Cooperation is allowed and encouraged within your discussion
section: the more correct answers in the section, the more
bonus points for all

▶ Staff will try to facilitate discussion but will not comment on
correct/incorrect answers during the quiz

▶ Scores will posted after all sections have taken the done the
bonus review, likely the following day

▶ Student in the Discussion Section with the highest
TotalCorrectSectionAnswers will get +2 BonusDots

▶ Bonus Review is Open Resource just like the exam:
https://www.cs.umd.edu/~profk/216/exam-rules.pdf

2

https://www.cs.umd.edu/~profk/216/exam-rules.pdf

Staging

▶ Open up the Gradescope Bonus Review Quiz for the day
▶ Once started, the quiz closes after 15min
▶ Get your resources set for the quiz

Okay...

3

Question 1
1 int quotient_greater(int numer,
2 int denom,
3 int thresh)
4 {
5 int quot = numer / denom;
6 if(quot > thresh){
7 return 1;
8 }
9 else{

10 return 0;
11 }
12 }

1 .global quotient_greater
2 quotient_greater:
3 movl %edi, %eax
4 cltq
5 cqto
6 idivl %esi
7 cmpl %edx, %eax
8 jle .ABOVE
9 movl $1, %eax

10 ret
11 .ABOVE:
12 movl $0, %eax
13 ret

Above is a correct C function and a BUGGY assembly implementation. Which
of the below best describes the problem in assembly and its fix?

▶ (A) Sign extension in preparation for the division is not correct; add a
cwtl first.

▶ (B) The argument registers are used incorrectly; change the first line to
movl (%edi),%eax

▶ (C) The %esi register cannot be used in division; copy %esi to a different
register and use that one in division.

▶ (D) The argument in %edx is changed during division; copy %edx to a
different register early then compare against that one later.

4

Question 2

Consider this struct and function
prototype.
// packed_struct_main.c
typedef struct {

short first;
short second;

} twoshort_t;

short sub_struct(twoshort_t ti);
Which of the nearby instruction
sequences will set the DX-family
register to be the value of ti.second if
placed at beginning sub_struct()?

sub_struct:
(A) edx = ti.second;
movq %rdi, %rdx
sarl $8, %edx
andl $0xFF, %edx

(B) edx = ti.second;
movl %edi, %edx
sall $16, %edx
andl $0xFFFF, %edx

(C) edx = ti.second;
movl %edi, %edx
sarl $16, %edx
andl $0xFFFF, %edx

(D) edx = ti.second;
movl $0, %edx
movw 2(%rdi), %dx

(E) edx = ti.second;
movzwq (%rdi), %dx

(F) edx = ti.second;
xorq %rdx,%rdx
movswq 2(%rdi), %dx

5

Question 3
==4012== Jump to the invalid address stated on the next line
==4012== at 0x1320D48: ???
==4012== by 0x4003F48: CALL_batt_update (test_batt_update_asm.s:227)
==4012== by 0x4003733: main (test_batt_update.c:668)
==4012== Address 0x1320d48 is not stack'd, malloc'd or (recently) free'd
==4012==
==4012== Process terminating with default action of signal 11 (SIGSEGV)

Which of the following is a likely cause and fix for the above error in Project 3’s
batt_update() function?

▶ (A) Incorrectly accessing an array location; FIX by adjusting the scaling factor
on an instruction of the form
... (%reg1, %reg2, scale) ...

▶ (B) Incorrect movement size causing data to be read or written that is out of
bounds; FIX by adjusting an instruction suffix to select one of q/l/w/b that is
appropriate to the C data type

▶ (C) Use of a callee-save register that is not properly restored before returning.
FIX by adding a pushq instruction at the beginning of the function to save the
register and a popq instruction to restore it before returning.

▶ (D) Failure to restore the stack pointer to its original value before returning;
FIX by finding the return statement that triggered the problem and using addq
/ popq instructions to restore the stack to its original state.

▶ (E) Improper stack alignment to set up a function call. FIX by adjusting the
stack pointer near the beginning of a function with a subq instruction to ensure
16-byte alignment accounting for the 8-byte return address on the stack already.

▶ (F) Incorrect syntax to access a global variable. FIX by adjusting a line like
movl myglobal, %eax TO movl myglobal(%rip), %eax
which uses PC-relative addressing

6

