
CSCI216: Threads in a Nutshell

Chris Kauffman

Last Updated:
Wed Dec 4 04:28:34 PM EST 2024

1

Logistics
Reading Bryant/O’Hallaron

Ch Read? Topic
Ch 12 Concurrent Programming

12.1 opt Conc Progr. w/ Processes
12.2 opt Conc Progr. w/ I/O Multiplexing
12.3 READ Conc Progr. w/ Threads
12.4 READ Shared Vars in Threaded Programs
12.5 READ Synchronizing Threads w/ Semaphores
12.6 READ Using Threads for Parallelism
12.7 opt Other Concurrency Issues

▶ B&H use
Semaphores in text
to coordinate
threads in Ch 12.5

▶ We will use
Mutexes instead

▶ Will explain the
minor difference

Assignments
Last Lab / HW for semester
▶ Lab12: Threads/Matrix Opt
▶ HW12: mmap() / pmap
▶ P5 Up, Due Mon 09-Dec

Questions on anything?

Date Event
Mon 02-Dec Dis: Lab12 Threads

Lab11/HW11 Due
Tue 03-Dec Threads Wrap
Wed 04-Dec Dis: Lab12 Threads
Thu 05-Dec Lec: Practice Exam
Mon 09-Dec Dis: Review

Lab12 / HW12 Due
P5 Due
Course Evals Due

Thu 12-Dec Final Exam
6:30-8:30pm Lec 1xx: IRB 0324

Lec 2xx: ESJ 0202
2

Announcements: Student Feedback Opportunities
Course Experiences Now Open
e.g. Rate your Professor
▶ https://www.courseexp.umd.edu/
▶ If response rate reaches 80% for all sections. . .
▶ by Mon 09-Dec 11:59pm. . .
▶ I will reveal a Final Exam Question
▶ No answers but public discussion welcome
▶ Feedback open through Tue 10-Dec

Canvas Exit Survey
▶ Now open on ELMS/Canvas
▶ https://umd.instructure.com/courses/1368155/

quizzes/1722546
▶ Worth 1 Full Engagement Point for completion
▶ Due prior to Final Exam (Wed 11-Dec 11:59pm)

3

https://www.courseexp.umd.edu/
https://umd.instructure.com/courses/1368155/quizzes/1722546
https://umd.instructure.com/courses/1368155/quizzes/1722546

Threads of Control within the Same Process

▶ Multiple threads execute different parts of the same code for
the program concurrently
▶ Concurrent: simultaneous or in an unspecified order
▶ Parallel: simultaneous

▶ Threads each have their own “private” function call stack
▶ CAN share stack values by passing pointers to them around
▶ Share the heap and global area of memory
▶ In Unix, Posix Threads (pthreads) is the most widely

available thread library

4

Processes vs Threads

Process in IPC Threads in pthreads
(Marginally) Longer startup (Marginally) Faster startup
Must share memory explicitly Memory shared by default
Good protection between processes Little protection between threads
fork() / waitpid() pthread_create() / _join()

Modern systems (Linux) can use semaphores / mutexes / shared memory /
message queues / condition variables to coordinate Processes or Threads

IPC Memory Model

Source

Thread Memory Model

Source
5

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/3_Processes.html
http://www.read.cs.ucla.edu/111/2006fall/notes/lec5

Process and Thread Functions

▶ Threads and process both represent “flows of control”
▶ Most ideas have analogs for both

Processes Threads Description
fork() pthread_create() create a new flow of control
waitpid() pthread_join() get exit status from flow of control
getpid() pthread_self() get “ID” for flow of control
exit() pthread_exit() exit (normally) from an existing flow

of control
abort() pthread_cancel() request abnormal termination of flow

of control
atexit() pthread_cleanup_push() register function to be called at exit

from flow of control

Stevens/Rago Figure 11.6: Comparison of process and thread primitives

6

Thread Creation

#include <pthread.h>
int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg);

int pthread_join(pthread_t thread, void **retval);

▶ Start a thread running function start_routine
▶ attr may be NULL for default attributes
▶ Pass arguments arg to the function
▶ Wait for thread to finish, put return in retval

7

Minimal Example

Code
// Minimal example of starting a
// pthread, passing a parameter to the
// thread function, then waiting for it
// to finish
#include <pthread.h>
#include <stdio.h>

void *doit(void *param){
int p=(int) param;
p = p*2;
return (void *) p;

}

int main(){
pthread_t thread_1;
pthread_create(&thread_1, NULL,

doit, (void *) 42);
int xres;
pthread_join(thread_1, (void **) &xres);
printf("result is: %d\n",xres);
return 0;

}

Compilation
▶ Link thread library

-lpthread
▶ Lots of warnings

> gcc pthreads_minimal_example.c -lpthread
pthreads_minimal_example.c: In function 'doit':
pthreads_minimal_example.c:7:9: warning:
cast from pointer to integer of different
size [-Wpointer-to-int-cast]

int p=(int) param;
^

pthreads_minimal_example.c:9:10: warning:
cast to pointer from integer of different
size [-Wint-to-pointer-cast]

return (void *) p;
^

> a.out
result is: 84

8

Observations About Pthreads

1. Child thread starts running code in the function passed to
pthread_create(), function doit() in example

2. Main Thread continues immediately, much like fork() but
child runs the given function while parent continues as is

3. Compilers provide Little syntax support for threads: must do a
lot of casting of arguments/returns

4. Thread Entry Functions can take a single pointer argument;
passing multiple arguments is usually done via a struct

5. Can’t say in which order Main/Children threads will execute;
identical to fork()’d processes

9

Motivation for Threads
▶ Like use of fork(), threads increase program complexity
▶ Improving execution efficiency is a primary motivator
▶ Assign independent tasks in program to different threads
▶ 2 common ways this can speed up program runs

(1) Parallel Execution with Threads
▶ Each thread/task computes part of an answer and then results are

combined to form the total solution
▶ Discuss in Lecture (Pi Calculation)
▶ REQUIRES multiple CPUs to improve on Single thread; Why?

(2) Hide Latency of Slow Tasks via Threads
▶ Slow tasks block a thread but Fast tasks can proceed independently

allowing program to stay busy while running
▶ Textbook coverage (I/O latency reduction)
▶ Does NOT require multiple CPUs to get benefit Why?

10

Model Problem: A Slice of Pi

▶ Calculate the value of π ≈ 3.14159
▶ Simple Monte Carlo algorithm to

do this
▶ Randomly generate positive (x,y)

coords
▶ Compute distance between (x,y)

and (0,0)
▶ If distance ≤ 1 increment “hits”
▶ Counting number of points in the

positive quarter circle
▶ After large number of hits, have

approximation

π ≈ 4 × total hits
total points

Algorithm generates dots, computes fraction
of red which indicates area of quarter circle
compared to square

11

Exercise: picalc_pthreads_broken.c

Serial Version (Single Thread)
▶ picalc_serial.c codes Monte Carlo approximation for Pi
▶ Uses rand_r() to generate pseudo-random numbers
▶ picalc_rand.c uses traditional rand(), discuss more later

Parallel Version (Multiple Threads)
Examine source code for pthreads_picalc_broken.c
Discuss following questions with a neighbor

1. How many threads are created? Fixed or variable?
2. How do the threads cooperate? Is there shared information?
3. Do the threads use the same or different random number

sequences?
4. Will this code actually produce good estimates of π?

12

Exercise: pthreads_picalc_broken.c
1 long total_hits = 0; long points_per_thread = -1;
2
3 void *compute_pi(void *arg){
4 long thread_id = (long) arg;
5 unsigned int rstate = 123456789 * thread_id; // unique seed per thread
6 for (int i = 0; i < points_per_thread; i++) {
7 double x = ((double) rand_r(&rstate)) / ((double) RAND_MAX);
8 double y = ((double) rand_r(&rstate)) / ((double) RAND_MAX);
9 if (x*x + y*y <= 1.0){

10 total_hits++;
11 }
12 }
13 return NULL;
14 }
15 int main(int argc, char **argv) {
16 long npoints = atol(argv[1]); // number of samples
17 int num_threads = argc>2 ? atoi(argv[2]) : 4; // number of threads
18 points_per_thread = npoints / num_threads; // init global variables
19 pthread_t threads[num_threads]; // track each thread
20 for(long p=0; p<num_threads; p++){ // launch each thread
21 pthread_create(&threads[p],NULL,compute_pi, (void *) (p+1));
22 }
23 for(int p=0; p<num_threads; p++){ // wait for each thread to finish
24 pthread_join(threads[p], (void **) NULL);
25 }
26 double pi_est = ((double)total_hits) / npoints * 4.0;
27 printf("npoints: %8ld\n",npoints);
28 printf("hits: %8ld\n",total_hits);
29 printf("pi_est: %f\n",pi_est);
30 return 0;
31 } 13

Answers: pthreads_picalc_broken.c

1. How many threads are created? Fixed or variable?
▶ Threads specified on command line

2. How do the threads cooperate? Is there shared information?
▶ Shared global variable total_hits

3. Do the threads use the same or different random number
sequences?
▶ Different, seed is based on thread number

4. Will this code actually produce good estimates of π?
▶ Nope: not coordinating updates to total_hits so will likely

be wrong
> gcc -Wall pthreads_picalc_broken.c -lpthread
> a.out 10000000 4
npoints: 10000000
hits: 3134064
pi_est: 1.253626 # not a good estimate for 3.14159

14

Why is pthreads_picalc_broken.c so wrong?
▶ The instructions total_hits++; is not atomic
▶ Translates to assembly

// total_hits stored at address #1024
30: load REG1 from #1024
31: increment REG1
32: store REG1 into #1024

▶ Interleaving of these instructions by several threads leads to
undercounting total_hits1

Mem #1024 Thread 1 REG1 Thread 2 REG1
total_hits Instruction Value Instruction Value

100
30: load REG1 100
31: incr REG1 101

101 32: store REG1
30: load REG1 101
31: incr REG1 102

102 32: store REG1
30: load REG1 102
31: incr REG1 103

30: load REG1 102
31: incr REG1 103

103 32: store REG1
103 32: store REG1

1CSAPP Ch 12.5 discusses similar code for another example
15

Critical Regions and Mutex Locks

▶ Access to shared variables
must be coordinated among
threads

▶ A mutex allows mutual
exclusion

▶ Locking a mutex is an
atomic operation like
incrementing/decrementing
a semaphore

pthread_mutex_t lock;

int main(){
// initialize a lock
pthread_mutex_init(&lock, NULL);
...;
// release lock resources
pthread_mutex_destroy(&lock);

}

void *thread_work(void *arg){
...
// block until lock acquired
pthread_mutex_lock(&lock);

do critical;
stuff in here;

// unlock for others
pthread_mutex_unlock(&lock);
...

}

16

Exercise: Protect critical region of picalc

▶ Insert calls to pthread_mutex_lock() / _unlock()
▶ Protect the critical region and Predict effects on execution

1 int total_hits=0;
2 int points_per_thread = ...;
3 pthread_mutex_t lock; // initialized in main()
4
5 void *compute_pi(void *arg){
6 long thread_id = (long) arg;
7 unsigned int rstate = 123456789 * thread_id;
8 for (int i = 0; i < points_per_thread; i++) {
9 double x = ((double) rand_r(&rstate)) / ((double) RAND_MAX);

10 double y = ((double) rand_r(&rstate)) / ((double) RAND_MAX);
11 if (x*x + y*y <= 1.0){
12 total_hits++; // update
13 }
14 }
15 return NULL;
16 }

17

Answers: Protect critical region of picalc

▶ Naive approach
if (x*x + y*y <= 1.0){

pthread_mutex_lock(&lock); // lock global variable
total_hits++; // update
pthread_mutex_unlock(&lock); // unlock global variable

}

▶ Ensures correct answers but. . .
▶ Severe effects on performance (next slide)

18

Speedup?
▶ Multiple threads should decrease wall (real) time and give

Speedup:
Speedup = Serial Time

Parallel Time
▶ Ideally want linear speedup: 2X speedup for 2 Threads, etc.

> gcc -Wall picalc_serial.c -lpthread
> time a.out 100000000 > /dev/null # SERIAL version
real 0m1.553s # 1.55 s wall time
user 0m1.550s
sys 0m0.000s
> gcc -Wall pthreads_picalc_mutex.c -lpthread
> time a.out 100000000 1 > /dev/null # PARALLEL 1 thread
real 0m2.442s # 2.44s wall time ?
user 0m2.439s
sys 0m0.000s
> time a.out 100000000 2 > /dev/null # PARALLEL 2 threads
real 0m7.948s # 7.95s wall time??
user 0m12.640s
sys 0m3.184s
> time a.out 100000000 4 > /dev/null # PARALLEL 4 threads
real 0m9.780s # 9.78s wall time???
user 0m18.593s # wait, something is
sys 0m18.357s # terribly wrong...

19

time Utility Reports 3 Times
'time prog args' reports 3 times for program runs
- real: amount of "wall" clock time, how long you have to wait
- user: CPU time used by program, sum of ALL threads in use
- sys : amount of CPU time OS spends in system calls for program

> time seq 10000000 > /dev/null # print numbers in sequence
real 0m0.081s # real == user time
user 0m0.081s # 100% cpu utilization
sys 0m0.000s # 1 thread, few syscalls

> time du ~ > /dev/null # check disk usage of home dir
real 0m2.012s # real >= user + sys
user 0m0.292s # 50% CPU utilization, lots of syscalls for I/O
sys 0m0.691s # I/O bound: blocking on hardware stalls

> time ping -c 3 google.com > /dev/null # contact google.com 3 times
real 0m2.063s # real >>= user+sys time
user 0m0.003s # low cpu utilization
sys 0m0.007s # lots of blocking on network

> time make > /dev/null # make with 1 thread
real 0m0.453s # real == user+sys time
user 0m0.364s # ~100% cpu utilization
sys 0m0.089s # syscalls for I/O but not I/O bound

> time make -j 4 > /dev/null # make with 4 "jobs" (threads/processes)
real 0m0.176s # real <= user+sys
user 0m0.499s # syscalls for I/O and coordination
sys 0m0.111s # parallel execution gives SPEEDUP!

20

Avoiding Mutex Contention for Efficiency
▶ Locking/Unlocking Mutexes is a system call, takes time for

the OS to coordinate threads
▶ Avoiding repeated lock/unlock cycles saves time
▶ Often necessitates private data per thread to contention
▶ In this case, private data is just a single integer but it may be

more complex in other settings (e.g. whole vector, matrix,
data structure, etc.)

// picalc_pthreads_mutex.c
// LOTS of lock contention: slow down

for (int i=0; i<points_per_thread; i++) {
double x = ...;
double y = ...;
if (x*x + y*y <= 1.0){

pthread_mutex_lock(&lock);
total_hits++;
pthread_mutex_unlock(&lock);

}
}

// picalc_pthreads_mutex_nocontention.c
// LITTLE lock contention: speedup

int my_hits = 0; // private per thread
for (int i=0; i<points_per_thread; i++) {

double x = ...;
if (x*x + y*y <= 1.0){

my_hits++;
}

}
pthread_mutex_lock(&lock);
total_hits += my_hits;
pthread_mutex_unlock(&lock);

21

Speedup!
▶ This problem is almost embarassingly parallel: very little

communication/coordination required
▶ Solid speedup gained but note that the user time increases as

threads increases due to overhead
8-processor desktop
> gcc -Wall picalc_pthreads_mutex_nocontention.c -lpthread
> time a.out 100000000 1 > /dev/null # 1 thread
real 0m1.523s # 1.52s, similar to serial
user 0m1.520s
sys 0m0.000s
> time a.out 100000000 2 > /dev/null # 2 threads
real 0m0.797s # 0.80s, about 50% time
user 0m1.584s
sys 0m0.000s
> time a.out 100000000 4 > /dev/null # 4 threads
real 0m0.412s # 0.41s, about 25% time
user 0m1.628s
sys 0m0.003s
> time a.out 100000000 8 > /dev/null # 8 threads
real 0m0.238s # 0.24, about 12.5% time
user 0m1.823s
sys 0m0.003s

22

Alternative Approach: Lock Free
As an alternative, can completely avoid the global variable / lock
by having working threads return private sums which are received
by main() and totaled in it, a more functional approach
void *compute_pi(void *arg){

long thread_id = (long) arg;
int my_hits = 0; // private count for this thread
unsigned int rstate = 123456789 * thread_id;
for (int i = 0; i < points_per_thread; i++) {

double x = ((double) rand_r(&rstate)) / ((double) RAND_MAX);
double y = ((double) rand_r(&rstate)) / ((double) RAND_MAX);
if (x*x + y*y <= 1.0){

my_hits++; // update local
}

}
return (void *) my_hits;

}
int main(){

...
int total_hits = 0;
for(int p=0; p<nthreads; p++){

int hits;
pthread_join(threads[p], (void **) &hits);
total_hits += hits;

}
}

23

rand() vs rand_r() Function Usage
Consider left/right examples below
▶ Very similar except use of rand_r() vs rand() functions
▶ Note the usage differences, rand_r() has state in its

parameter, rand() uses hidden global variable for its state
// picalc_pthreads_mutex_nocontention.c:
int main(){

...;
pthread_create(...,compute_pi,i+1);
...;

}

void *compute_pi(void *arg){
long thread_id = (long) arg;
unsigned int rstate =

123456789 * thread_id;
int my_hits = 0;
for (int i=0; i<points_per_thread; i++){

double x = ((double) rand_r(&rstate))
/ ((double) RAND_MAX);

double y = ((double) rand_r(&rstate))
/ ((double) RAND_MAX);

if (x*x + y*y <= 1.0){
my_hits++;

}
}
...

// picalc_pthreads_rand.c:
int main(){

...;
srand(123456789); // seed generator
...;

}

void *compute_pi(void *arg){
// rand() uses a hidden global variable
// for the state of the random number
// generator
int my_hits = 0;
for (int i = 0; i < points_per_thread; i++){

double x = ((double) rand())
/ ((double) RAND_MAX);

double y = ((double) rand())
/ ((double) RAND_MAX);

if (x*x + y*y <= 1.0){
my_hits++;

}
}

24

Exercise: rand() vs rand_r() Function Performance
Which of these to seems to scale better with the number of
threads? Why do you think the slower suffers?

val>> gcc -o p_rand_r picalc_pthreads_rand_r.c

val>> time ./p_rand_r 1000000 1
npoints: 1000000
hits: 785235
pi_est: 3.140940
real 0m0.060s
user 0m0.054s
sys 0m0.004s

val>> time ./p_rand_r 1000000 2
npoints: 1000000
hits: 784938
pi_est: 3.139752
real 0m0.038s
user 0m0.061s
sys 0m0.004s

val>> time ./p_rand_r 1000000 4
npoints: 1000000
hits: 785398
pi_est: 3.141592
real 0m0.023s
user 0m0.061s
sys 0m0.004s

val>> gcc -o p_rand picalc_pthreads_rand.c

val>> time ./p_rand 1000000 1
npoints: 1000000
hits: 785229
pi_est: 3.140916
real 0m0.136s
user 0m0.133s
sys 0m0.001s

val>> time ./p_rand 1000000 2
npoints: 1000000
hits: 784982
pi_est: 3.139928
real 0m1.018s
user 0m1.166s
sys 0m0.855s

val>> time ./p_rand 1000000 4
npoints: 1000000
hits: 785589
pi_est: 3.142356
real 0m0.522s
user 0m0.970s
sys 0m0.954s

25

Answers: rand() vs rand_r() Function Performance
▶ rand_r() is faster out of the gate and runs faster with more

threads
▶ rand() runs slower for 1 thread, slows down significantly at 2

threads, still slow at 4 threads
▶ rand() must protect the global variable representing the

random number state with mutual exclusion: each call to
rand() likely involves some sort lock/compute/unlock

▶ This slows things down for the rand() version
▶ rand_r() puts the random number generation state in each

thread so no coordination is needed: unshared data leads to
speed

// GLIBC rand.c
int rand (void) {

return (int) __random ();
}

// GLIBC random.c
static struct random_data unsafe_state = {...}

long int __random (void) {
int32_t retval;
__libc_lock_lock (lock);
(void) __random_r (&unsafe_state, &retval);
__libc_lock_unlock (lock);
return retval;

}
26

Meaning of Thread Safety
Thread safety is achieved in one of two ways

1. Use local data only: no shared data
2. Protect shared data with mutex locking/unlocking around

critical regions
Historically many Unix library functions were not thread-safe
▶ malloc() / free() operated on the heap, a shared data

structure; not initially thread-safe but modern incarnations are
using combinations of (hidden) local data and mutexs

▶ rand() function was historically NOT thread-safe
▶ used a global variable as the state of the random number

generator
▶ multiple threads calling it would corrupt the state leading

too. . . random numbers (unpredictable random numbers)
▶ rand_r() was introduced to fix this, use local state
▶ Most rand() implementations are now thread-safe and

rand_r() has been deprecated: will be eventually removed
▶ Switch to the jrand48() function for similar functionality to

rand_r()
27

http://man.he.net/?topic=jrand48§ion=all

Thread-Safe Functions Documentation
Manual pages for library functions often describe whether they are
safe for multiple threads to use or not
MALLOC(3) Library Functions Manual MALLOC(3)

NAME
malloc, free, calloc, realloc, reallocarray - allocate and free dynamic
memory

...
ATTRIBUTES

|---------------------------------------+---------------+---------|
| Interface | Attribute | Value |
|---------------------------------------+---------------+---------|
| malloc(), free(), calloc(), realloc() | Thread safety | MT-Safe |
|---------------------------------------+---------------+---------|

==
CRYPT(3) Library Functions Manual CRYPT(3)

NAME
crypt, crypt_r, crypt_rn, crypt_ra - passphrase hashing

...
char * crypt(const char *phrase, const char *setting);
char * crypt_r(const char *phrase, const char *setting,

struct crypt_data *data);

ATTRIBUTES
|-----------------------------+---------------+----------------|
| Interface | Attribute | Value |
|-----------------------------+---------------+----------------|
| crypt | Thread safety | MT-UnSafe race |
|-----------------------------+---------------+----------------|
| crypt_r, crypt_rn, crypt_ra | Thread safety | MT-Safe |
|-----------------------------+---------------+----------------| 28

Reentrant Functions

A related concept to Thread Safe functions are Reentrant
Functions

. . . reentrant if it can be interrupted in the middle of its
execution, and then be safely called again (“re-entered”)
before its previous invocations complete execution.
– Wikipedia: Reentrancy

General hierearchy is:

Quality Probable Causes
Thread Unsafe Uses shared data without coordination
Thread Safe Uses shared data (e.g. mutex locking), not necessarily reentrant
Reentrant Uses local data, Thread-safe by default

Reentrant functions are important as one would write signal
handlers as handlers can be interrupted and lead to re-entering a
function

29

https://en.wikipedia.org/wiki/Reentrancy_(computing)

Thread IDs: OS-Level vs Logical
OS Thread ID Functions
Thread ID functions exist on
most UNIX platforms but. . .
// treat thread as a big integer
unsigned long = pthread_self();

// Linux only
pid_t tid = gettid(); // system call
printf("Thread %d reporting for duty\n",

tid);

// Non-portable, non-linux
pthread_id_np_t tid =

pthread_getthreadid_np();

NONE of the above are likely
give thread ids numbered
0,1,2,3. . . on all systems and
should not be used when such
logic is desired

Logical Thread IDs
When logical IDs (0,1,2,..) are
required, can be created simply
and passed via “context” data
// pthread_sum_array.c:
typedef struct {

int threadid;
...

} work_context_t;

void *worker_func(void *arg){
work_context_t *ctx =

(work_context *) arg ;
int my_id = ctx->threadid;
...;

}

int main(){
...;
work_context_t ctxs[4]={};
for(int i=0; i<4; i++){

ctxs[i].thread_id = i;
pthread_create(&threads[i],NULL

worker_func, &ctxs[i]);
}
...;

} 30

Examine: pthread_sum_array.c
▶ Common thread code patterns demonstrated there
▶ To make threaded functions more general avoid use of

global variables
▶ Commonly requires passing pointers to a struct as the

argument to worker threads; Kauffman uses the term
“context” for this struct but that is not in wide use

▶ The struct usually carries essential information into a worker
thread function:
▶ Thread’s ID and total # threads
▶ Pointers to data on which to operate
▶ Pointers to any data needed to coordinate (e.g. Mutexes)

▶ Context struct provides all that’s needed for threads to do
their share of work

▶ Avoids the need to use a global variable: code is more
self-contained

▶ Use this idea in Project 5 to set up coordination
31

Mutex vs Semaphore

Similarities
▶ Both used to protect critical

regions of code from other
processes/threads

▶ Both use non-busy waiting
▶ process/thread blocks if

locked by another
▶ unlocking wakes up a blocked

process/thread
▶ Both can be process private or

shared between processes
▶ Shared mutex requires shared

memory
▶ Private semaphore with

option pshared==0

Differences
▶ Semaphores loosely associated

to Process coordination
▶ Mutexes loosely associated to

to Thread coordination
▶ Both can be used for either

with correct setup
▶ Semaphores posses an arbitrary

natural number, usually
0 for locked, 1,2,3,.. for
available

▶ Mutexes are either
locked/unlocked

▶ Mutexes have a busy locking
variant: pthread_spinlock_t

32

Semaphore Terminology and History
▶ “Semaphore” generally some sort of signaling mechanism to

control a shared resource, usage in computing originated from
Railway Semaphores used to control Single Train Tracks to
avoid collisions

▶ Use in computing attributed to Edsger Dijkstra, slightly more
general than typical Mutex lock, slightly different terminology

Acquire Release
Mutex lock() unlock()
Semaphore wait() post() / signal()

▶ Technically post() will increment the semaphore value but
often they are used just as 0 “locked” and 1 “unlocked”

▶ There are two major UNIX versions of Semaphores
▶ POSIX Semaphores which are newer, widely available, have a

relatively clean design, should be used in new code
▶ System V IPC Semaphores which are old, a bit nutty, and

should be avoided in new code if at all possible
33

https://en.wikipedia.org/wiki/Railway_semaphore_signal
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
http://man.he.net/?topic=sem_overview§ion=all
http://man.he.net/man7/sysvipc

Mutex Gotchas
▶ Managing multiple mutex locks is tricky: wrong protocol may

result in deadlock, threads waiting for each other to release
locks

▶ Same thread locking same mutex twice can cause deadlock
depending on options associated with mutex

▶ Interactions between threads with different scheduling priority
are also tough to understand and the source of trouble

▶ Notable Mutex problem in the Mars Pathfinder Onboard
Computer
▶ Used multiple threads with differing priorities to manage

limited hardware
▶ Shortly after landing, started rebooting like crazy due to odd

thread interactions
▶ Short-lived, low-priority thread got a mutex, pre-empted by

long-running medium priority thread, system freaked out
because others could not use resource associated with mutex

▶ Search for articles on “Thread Priority Inversion” problems
which is the class of problems that nearly derailed the mission

34

https://en.wikipedia.org/wiki/Mars_Pathfinder#On-board_computer
https://en.wikipedia.org/wiki/Mars_Pathfinder#On-board_computer

PThread Barriers

pthread_barrier_t barrier;
// data type used to manage barriers

int pthread_barrier_wait(pthread_barrier_t *barrier);
// Blocks calling thread until a specified number of other threads
// wait on barrier. All threads proceed once count is reached.

int pthread_barrier_init(pthread_barrier_t *barrier,
pthread_barrierattr_t *attr,
unsigned count);

// Initialize data associated with barrier. Parameter `count` is the
// number of threads which must wait before all proceed.

int pthread_barrier_destroy(pthread_barrier_t *barrier);
// De-allocate barrier data

▶ Construct that allows bulk synchronization between threads
▶ Can ensure all threads reach a certain point before proceeding
▶ pthread_barrier_demo.c: shows basic purpose of barriers

35

Exercise: Scaling an Array
▶ Adapt the approach of the earlier sum example to scale

elements of an array by dividing each element by the sum
▶ Use a pthread_barrier_t with pthread_barrier_wait()

to coordinate parts of the computation

void *workfunc(void *arg){
...;
double my_sum = 0.0;
for(long i=start; i<stop; i++){

my_sum += ctx.array[i];
}

pthread_mutex_lock(ctx.lock);
*ctx.total_sum += my_sum;
pthread_mutex_unlock(ctx.lock);

// ADD COORDINATION / SCALING HERE

return NULL;
}

// MODIFY TO INCLUDE BARRIER DATA
int main() {

...;
pthread_mutex_t lock;
pthread_mutex_init(&lock,NULL);

pthread_t threads[num_threads];
work_context_t context[num_threads];

for(int i=0; i<num_threads; i++){
...;
context[i].lock = &lock;

pthread_create(&threads[i],NULL,
workfunc, &context[i]);

}
...;

}
36

Answers: Scaling an Array
See pthread_scale_array.c for full solution

void *workfunc(void *arg){
...;
double my_sum = 0.0;
for(long i=start; i<stop; i++){

my_sum += ctx.array[i];
}

pthread_mutex_lock(ctx.lock);
*ctx.total_sum += my_sum;
pthread_mutex_unlock(ctx.lock);

// ADD COORDINATION / SCALING HERE
pthread_barrier_wait(ctx.barrier);
my_sum = *ctx.total_sum;
for(long i=start; i<stop; i++){

ctx.array[i] /= my_sum;
}

return NULL;
}

// MODIFY TO INCLUDE BARRIER DATA
int main() {

...;
pthread_mutex_t lock;
pthread_mutex_init(&lock,NULL);
pthread_barrier_t barrier;
pthread_barrier_init(&barrier,NULL,

num_threads);

pthread_t threads[num_threads];
work_context_t context[num_threads];

for(int i=0; i<num_threads; i++){
...;
context[i].lock = &lock;
context[i].barrier = &barrier;

pthread_create(&threads[i],NULL,
workfunc, &context[i]);

}
...;

} 37

==== END FALL 2024 CONTENT =====

Remaining content is optional but informative

38

(Optional) Exercise: Mutex Busy wait or not?

▶ Consider given program
▶ Threads acquire a mutex, sleep

1s, release
▶ Predict user and real/wall

times if
1. Mutex uses busy waiting

(polling)
2. Mutex uses interrupt driven

waiting (sleep/wakup when
ready)

▶ Can verify by compiling and
running
time a.out

1 // Busy?
2 int glob = 1;
3 pthread_mutex_t glob_lock;
4
5 void *doit(void *param){
6 pthread_mutex_lock(&glob_lock);
7 glob = glob*2;
8 sleep(1);
9 pthread_mutex_unlock(&glob_lock);

10 return NULL;
11 }
12
13 int main(){
14 printf("BEFORE glob: %d\n",glob);
15
16 pthread_mutex_init(&glob_lock, NULL);
17 pthread_t thread_1;
18 pthread_create(&thread_1, NULL, doit, NULL);
19 pthread_t thread_2;
20 pthread_create(&thread_2, NULL, doit, NULL);
21
22 pthread_join(thread_1, (void **) NULL);
23 pthread_join(thread_2, (void **) NULL);
24
25 printf("AFTER glob: %d\n",glob);
26 pthread_mutex_destroy(&glob_lock);
27
28 return 0;
29 }

39

Answers: Mutex Busy wait or not? NOT

▶ Locking is Not a busy wait
▶ Either get the lock and

proceed OR
▶ Block and get woken up

when the lock is available
▶ Timing is

▶ real: 2.000s
▶ user: 0.001s

▶ Contrast with
time_spinlock.c:
▶ real: 2.000s
▶ user: 1.001s

▶ pthread_spinlock_* like
mutex but wait “busily”:
faster access for more CPU

1 // time_mutex_.c: Not busy, blocked!
2 int glob = 1;
3 pthread_mutex_t glob_lock;
4
5 void *doit(void *param){
6 pthread_mutex_lock(&glob_lock);
7 glob = glob*2;
8 sleep(1);
9 pthread_mutex_unlock(&glob_lock);

10 return NULL;
11 }
12
13 int main(){
14 printf("BEFORE glob: %d\n",glob);
15
16 pthread_mutex_init(&glob_lock, NULL);
17 pthread_t thread_1;
18 pthread_create(&thread_1, NULL, doit, NULL);
19 pthread_t thread_2;
20 pthread_create(&thread_2, NULL, doit, NULL);
21
22 pthread_join(thread_1, (void **) NULL);
23 pthread_join(thread_2, (void **) NULL);
24
25 printf("AFTER glob: %d\n",glob);
26 pthread_mutex_destroy(&glob_lock);
27
28 return 0;
29 }

40

Mixing Processes and Threads
▶ You can mix IPC and Threads if you hate yourself enough.

Dealing with signals can be complicated even with a
process-based paradigm. Introducing threads into the pic-
ture makes things even more complicated.
– Stevens/Rago Ch 12.82

▶ Strongly suggest you examine Stevens and Rago 12.8-12.10 to
find out the following pitfalls:

▶ Threads have individual Signal Masks (for blocking) but share
Signal Disposition (for handling funcs/termination)

▶ Calling fork() from a thread creates a new process with all
the locks/mutexes of the parent but only one thread (!?)
▶ Usually implement a pthread_atfork() handler for this

▶ Multiple threads should use pread() / pwrite() to
read/write from specific offsets; ensure that they do not step
on each other’s I/O calls

2Advanced Programming in the Unix Environment, 3rd Ed by Richard
Stevens and Stephen A. Rago

41

https://www.linuxprogrammingblog.com/threads-and-fork-think-twice-before-using-them
https://en.wikipedia.org/wiki/Advanced_Programming_in_the_Unix_Environment
https://en.wikipedia.org/wiki/Advanced_Programming_in_the_Unix_Environment

Are they really so different?
▶ Unix standards strongly distinguish between threads and

processes: different system calls, sharing, etc.
▶ Due to their similarities, you should be skeptical of this

distinction as smart+lazy OS implementers can exploit it:
Linux uses a 1-1 threading model, with (to the kernel) no
distinction between processes and threads – everything is
simply a runnable task.
On Linux, the system call clone() clones a task, with a
configurable level of sharing. . .

Unix Syscall Linux implementation
fork() clone(LEAST sharing)
pthread_create() clone(MOST sharing)

– Ryan Emerle, SO:“Threads vs Processes in Linux”

The “1-1” model is widely used (Linux, BSD, Windows(?)) but
conventions vary between OSs: check your implementation for
details

42

https://stackoverflow.com/questions/807506/threads-vs-processes-in-linux

Lightweight Threads of Various Colors
▶ Pthreads are (almost) guaranteed to interact with the OS
▶ On Linux, a Pthread is a “schedulable” entity which is

automatically given time on the CPU by the scheduler
▶ Other kinds of threads exist with different properties with

various names, notably lightweight / green threads
Green threads are threads that are scheduled by a runtime
library or virtual machine (VM) instead of natively by the
underlying operating system (OS).
– Wikip: Green Threads

▶ Lightweight/Green thread library usually means OS only sees
a single process

▶ Process itself must manage its internal threads with its own
scheduler / yield semantics
▶ Advantage: Fast startup :-D
▶ Drawback: No parallelism :-(

43

https://en.wikipedia.org/wiki/Green_threads

(Optional) Exercise: Processes vs Threads

Processes when. . .
Identify some obvious signs your application should you use
processes vs. . .

Threads when. . .
Identify some obvious signs your application should you use threads
instead

44

Answers: Processes vs Threads

Processes when. . .
▶ Limited amount of sharing needed, file or single block of

memory
▶ Want ability to monitor/manage/kill distinct tasks with

standard OS tools
▶ Plan to make use of signals in any appreciable way

Threads when. . .
▶ Tasks must share a lot of data
▶ Likely that won’t need to individually monitor tasks
▶ Absolutely need fastest possible startup of subtasks

45

Threads Should be Chosen Cautiously

▶ Managing concurrency is hard
▶ Separate processes provide one means to do so, often a good

start as defaults to nothing shared
▶ Performance benefits of threads come with MANY

disadvantages and pitfalls
▶ If forced to use threads, consider design carefully
▶ If possible, use a higher-level thread manager like OpenMP,

well-suited for parallelizing loops for worker threads
▶ Avoid mixing threads/IPC if possible
▶ Prepare for a tough slog. . .

46

https://en.wikipedia.org/wiki/OpenMP

