
CMSC216: Memory Systems

Chris Kauffman

Last Updated:
Tue Nov 19 09:21:47 AM EST 2024

1

Logistics
Goals
▶ Cache vs DRAM Memory, Matrix Layout
▶ Permanent Storage Hardware
▶ Virtual Memory

Assignments
▶ Lab11: Makefiles / Memory

Strides
▶ HW11: Cache Optimization
▶ P4: Due Friday, Makeup

Credit Posted

Reading Bryant/O’Hallaron

Ch Read? Topic
Ch 6 The Memory Hierarchy
Ch 6.1 skim Storage Technologies
Ch 6.2 READ Locality
Ch 6.3 READ The Memory Hierarchy
Ch 6.4 opt Cache Memories
Ch 6.5 READ Writing Cache Friendly Code
Ch 6.6 skim Impacts of Cache on Performance
Ch 9 Virtual Memory
Ch 9.1-6 skim VM Overview, Address Translation
Ch 9.7 opt Case Study
Ch 9.8 READ Memory mapping and mmap()
Ch 9.9 READ Dynamic Memory Allocation
Ch 9.10 opt Garbage Collection
Ch 9.11 skim Memory Bugs in C Programs

2

Announcements

Thanksgiving Week Meetings
https://piazza.com/class/lzzvmm0hu9v228/post/1842
▶ Discussion Sections Canceled Mon 25-Nov
▶ Staff may hold extra office hours, check the office hours

schedule
▶ Lecture via Zoom Tue 26-Nov

3

https://piazza.com/class/lzzvmm0hu9v228/post/1842

Measuring Time in Code

▶ Measure CPU time with the standard clock() function;
measure time difference and convert to seconds

▶ Measure Wall (real) time with gettimeofday() or related
functions; fills struct with info on time of day (duh)

CPU Time
#include <time.h>

clock_t begin, end;
begin = clock(); // current cpu moment

do_something();

end = clock(); // later moment

double cpu_time =
((double) (end-begin)) / CLOCKS_PER_SEC;

Real (Wall) Time
#include <sys/time.h>

struct timeval tv1, tv2;
gettimeofday(&tv1, NULL); // early time

do_something();

gettimeofday(&tv2, NULL); // later time

double wall_time =
((tv2.tv_sec-tv1.tv_sec)) +
((tv2.tv_usec-tv1.tv_usec) / 1000000.0);

4

Exercise: Time and Throughput
Consider the following simple
loop to sum elements of an array
from stride_throughput.c
int *data = ...; // global array

int sum_simple(int len, int stride){
int sum = 0;
for(int i=0; i<len; i+=stride){

sum += data[i];
}
return sum;

}

int main(){
...;
int x1 = sum_simple(n,1);
int x2 = sum_simple(n,2);
int x3 = sum_simple(n,3);
// total time for each stride?
// throughput for each stride?

}

▶ Param stride controls step
size through loop

▶ Interested in two features of
the sum_simple() function:

1. Total Time to complete
2. Throughput:

Throughput = #Additions

Second

▶ How would one measure and
calculate these two in a
program?

▶ As stride increases, predict
how Total Time and
Throughput change

5

Answers: Time and Throughput

Measuring Time/Throughput
Most interested in CPU time so
begin = clock();
sum_simple(length,stride);
end = clock();
cpu_time = ((double) (end-begin))

/ CLOCKS_PER_SEC;

throughput = ((double) length) /
stride /
cpu_time;

Time vs Throughput
As stride increases. . .
▶ Time decreases: doing fewer

additions (duh)
▶ Throughput decreases

Plot of Stride vs Throughput

▶ Stride = 1: consecutive
memory accesses

▶ Stride = 16: jumps through
memory, more time

6

Memory Mountains from Bryant/O’Hallaron
▶ Varying stride for a fixed length leads to decreasing

performance, 2D plot
▶ Can also vary length for size of array to get a 3D plot
▶ Illustrates features of CPU/memory on a system
▶ The “Memory Mountain” on the cover of our textbook
▶ What interesting structure do you see?

7

CPU vs Memory Speed
▶ Early Computing Systems had a CPU Chips and Memory

Chips, little if any data storage in the CPU (e.g. no registers)
▶ CPU and Memory Chips ran at similar speeds / clock

frequencies: CPU would fetch data from Memory, perform
arithmetic, store answers back to Memory

▶ Engineers found it easier to increase CPU Chip speed than
Memory Chip speed: could now perform 100s of arithmetic
operations in the time that a single Memory Fetch / Store
could take place

▶ Registers and Cache were developed in response to the
growing speed difference between CPU and Memory Chips

▶ Registers can be directly controlled by programmers (if the
code in Assembly)

▶ Cache memory is (mostly) managed by the hardware itself,
the Main Memory System

8

Cache Favors Temporal and Spatial Locality

Hardware folks noticed programmers often write loops like
for(int i=0; i<len; i++){

sum += array[i];
}
which exhibits two Memory Locality features

1. Temporal Locality: memory recently used likely to be used
again soon (like sum and i used in every loop iteration)

2. Spatial Locality: nearby addresses to recently used memory
likely to be used (like arr[0] first then arr[1],arr[2])

Hardware engineers began adding chunks of Memory to CPUs to
exploit these code tendencies giving rise to Cache Memory
▶ Code that utilizes Cache well will run faster

9

The Memory Pyramid

Source

10

https://linux2me.wordpress.com/2017/09/15/linux-introduction-to-memory-management/

Numbers Everyone Should Know

▶ “Main Memory” is comprised of many different physical
devices that work together and have differing sizes/speeds

▶ Accessing memory at #4096 may involve some or all of. . .
▶ Several Levels of Cache Memory on CPU (SRAM)
▶ DRAM memory on separate chips
▶ Permanent storage (SSDs and HDDs)

Edited Excerpt of Jeff Dean’s talk on data centers.

Reference Time Analogy
Register - Your brain
L1 cache reference 0.5 ns Your desk
L2 cache reference 7 ns Neighbor’s Desk
DRAM memory reference 100 ns This Room
Disk seek 10,000,000 ns Salt Lake City

Big-O Analysis does NOT capture these; proficient programmers do

11

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/people/jeff/stanford-295-talk.pdf

Diagrams of Memory Interface and Cache Levels

Source: Bryant/O’Hallaron CS:APP 3rd Ed.

Source: SO “Where exactly L1, L2 and L3 Caches
located in computer?”

12

https://superuser.com/questions/196143/where-exactly-l1-l2-and-l3-caches-located-in-computer
https://superuser.com/questions/196143/where-exactly-l1-l2-and-l3-caches-located-in-computer

Why isn’t Everything Cache?
Metric 1985 1990 1995 2000 2005 2010 2015 2015/1985
SRAM $/MB 2,900 320 256 100 75 60 25 116
SRAM access (ns) 150 35 15 3 2 1.5 1.3 115
DRAM $/MB 880 100 30 1 0.1 0.06 0.02 44,000
DRAM access (ns) 200 100 70 60 50 40 20 10

Source: Bryant/O’Hallaron CS:APP 3rd Ed., Fig 6.15, pg 603

1 bit SRAM = 6 transistors 1 bit DRAM = 1 transistor + 1 capacitor

“What Every Programmer Should Know
About Memory” by Ulrich Drepper, Red
Hat, Inc.

13

https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

Diagram of Direct Mapped Cache

 11 12 13 14

 21 22 23 24

 31 32 33 34

 41 42 43 44

 51 52 53 54

 61 62 63 64

 71 72 73 74

 81 82 83 84

 91 92 93 94

 101 102 103 104

 111 112 113 114

 121 122 123 124

 91 92 93 94

 61 62 63 64

 31 32 33 34

 81 82 83 84

Source: Dive into Systems dot org, with modifications

14

https://diveintosystems.org/book/C11-MemHierarchy/caching.html

How big is your cache? Check Linux System special Files
lscpu Utility
Handy Linux program that
summarizes info on CPU(s)
> lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 36 bits physical,

48 bits virtual
CPU(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 58
Model name: Intel(R) Core(TM)

i7-3667U CPU @ 2.00GHz
...
L1d cache: 64 KiB
L1i cache: 64 KiB
L2 cache: 512 KiB
L3 cache: 4 MiB
Vulnerability Meltdown: Mitigation; ...
Vulnerability Spectre v1: Mitigation ...
...

Detailed Hardware Info
Files under /sys/devices/...
show hardware info (caches)
> cd /sys/devices/system/cpu/cpu0/cache/
> ls
index0 index1 index2 index3 ...

> ls index0/
number_of_sets type level size
ways_of_associativity ...

> cd index0
> cat level type number_* ways_* size
1 Data 64 8 32K

> cd ../index1
> cat level type number_* ways_* size
1 Instruction 64 8 32K

> cd ../index3
> cat level type number_* ways_* size
3 Unified 8192 20 10240K

15

Exercise: 2D Arrays
▶ Several ways to construct “2D” arrays in C
▶ All must embed a 2D construct into 1-dimensional memory
▶ Consider the 2 styles below: how will the picture of memory

look different?
// REPEATED MALLOC
// allocate
int rows=100, cols=30;
int **mat =

malloc(rows * sizeof(int*));

for(int i=0; i<rows; i++){
mat[i] = malloc(cols*sizeof(int));

}

// do work
mat[i][j] = ...

// free memory
for(int i=0; i<rows; i++){

free(mat[i]);
}
free(mat);

// TWO MALLOCs
// allocate
int rows=100, cols=30;
int **mat =

malloc(rows * sizeof(int*));
int *data =

malloc(rows*cols*sizeof(int));
for(int i=0; i<rows; i++){

mat[i] = data+i*cols;
}

// do work
mat[i][j] = ...

// free memory
free(data);

free(mat);
16

Answer: 2D Arrays

17

Single Malloc Matrices

Somewhat common to use a 1D array as a 2D matrix as in
int *matrix =

malloc(rows*cols*sizeof(int));

int i=5, j=20;
int elem_ij = matrix[i*cols + j]; // retrieve element i,j

HWs / Labs / P4 will use this technique along with some structs
and macros to make it more readable:
matrix_t mat;
matrix_init(&mat, rows, cols);

int elij = MGET(mat,i,j);
// elij = mat.data[mat.cols*i + j]

MSET(mat,i,j, 55);
// mat.data[mat.cols*i + j] = 55;

18

Aside: Row-Major vs Col-Major Layout
▶ Many languages use Row-Major order for 2D arrays/lists

▶ C, Java, Python, Ocaml,. . .
▶ mat[i] is a contiguous row, mat[i][j] is an element

▶ Numerically-oriented languages use Column-Major order
▶ Fortran, Matlab/Octave, R, Ocaml (?). . .
▶ mat[j] is a contiguous column, mat[i][j] is an element

▶ Being aware of language convention can increase efficiency

Source: The Craft of Coding

19

https://craftofcoding.wordpress.com/2017/02/03/column-major-vs-row-major-arrays-does-it-matter/

Exercise: Matrix Summing

▶ How are the two codes below different?
▶ Are they doing the same number of operations?
▶ Which will run faster?

int sumR = 0;
for(int i=0; i<rows; i++){

for(int j=0; j<cols; j++){
sumR += mat[i][j];

}
}

int sumC = 0;
for(int j=0; j<cols; j++){

for(int i=0; i<rows; i++){
sumC += mat[i][j];

}
}

20

Answer: Matrix Summing

▶ Show timing in matrix_timing.c
▶ sumR faster the sumC: caching effects
▶ Discuss timing functions used to determine duration of runs

> gcc -Og matrix_timing.c
> a.out 50000 10000
sumR: 1711656320 row-wise CPU time: 0.265 sec, Wall time: 0.265
sumC: 1711656320 col-wise CPU time: 1.307 sec, Wall time: 1.307

▶ sumR runs about 6 times faster than sumC
▶ Understanding why requires knowledge of the memory

hierarchy and cache behavior

21

(Optional) Tools to Measure Performance: perf

▶ The Linux perf tool is useful to measure performance of an
entire program

▶ Shows variety of statistics tracked by the kernel about things
like memory performance

▶ Examine examples involving the matrix_timing program:
sumR vs sumC

▶ Determine statistics that explain the performance gap
between these two?

22

(Optional Exercise): perf on sumR vs sumC
What stats below might explain the performance difference?

> perf stat $perfopts ./matrix_timing 8000 4000 row ## RUN sumR ROW SUMMING
sumR: 1227611136 row-wise CPU time: 0.019 sec, Wall time: 0.019
Performance counter stats for './matrix_timing 8000 4000 row': %SAMPLED
135,161,407 cycles:u (45.27%)
417,889,646 instructions:u # 3.09 insn per cycle (56.22%)
56,413,529 L1-dcache-loads:u (55.96%)
3,843,602 L1-dcache-load-misses:u # 6.81% of all L1-dcache hits (50.41%)

28,153,429 L1-dcache-stores:u (47.42%)
125 L1-icache-load-misses:u (44.77%)

3,473,211 cache-references:u # last level of cache (56.22%)
1,161,006 cache-misses:u # 33.427 % of all cache refs (56.22%)

> perf stat $perfopts ./matrix_timing 8000 4000 col # RUN sumC COLUMN SUMMING
sumC: 1227611136 col-wise CPU time: 0.086 sec, Wall time: 0.086
Performance counter stats for './matrix_timing 8000 4000 col': %SAMPLED
372,203,024 cycles:u (40.60%)
404,821,793 instructions:u # 1.09 insn per cycle (57.23%)
61,990,626 L1-dcache-loads:u (60.21%)
39,281,370 L1-dcache-load-misses:u # 63.37% of all L1-dcache hits (45.66%)
23,886,332 L1-dcache-stores:u (43.24%)

2,486 L1-icache-load-misses:u (40.82%)
32,582,656 cache-references:u # last level of cache (59.38%)
1,894,514 cache-misses:u # 5.814 % of all cache refs (60.38%)

23

Answers: perf stats for sumR vs sumC, what’s striking?
Observations
▶ Similar number of instructions between row/col versions
▶ #cycles lower for row version → higher insn per cycle
▶ L1-dcache-misses: marked difference between row/col

version
▶ Last Level Cache Refs : many, many more in col version
▶ Col version: much time spent waiting for memory system to

feed in data to the processor

Notes
▶ The right-side percentages like (50.41%) indicate how much

of the time this feature is measured; some items can’t be
monitored all the time.

▶ Specific perf invocation is in
10-memory-systems-code/measure-cache.sh

24

Flavors of Permanent Storage

▶ Have discussed a variety of fast memories which are small
▶ At the bottom of the pyramid are disks: slow but large

memories, may contain copies of what is in higher parts of
memory pyramid

▶ These are persistent: when powered off, they retain
information

▶ Permanent storage often referred to as a “drive”
▶ Comes in many variants but these 3 are worth knowing about

in the modern era
1. Rotating Disk Drive
2. Solid State Drive
3. Magnetic Tape Drive

▶ Surveyed in the slides that follow

25

Ye Olde Rotating Disk
▶ Store bits “permanently” as

magnetized areas on special
platters

▶ Magnetic disks: moving
parts → slow

▶ Cheap per GB of space

Source: CS:APP Slides

Source: Realtechs.net

Source: CS:APP Slides
26

http://www.cs.cmu.edu/afs/cs/academic/class/15213-f15/www/lectures/11-memory-hierarchy.pdf
http://www.realtechs.net/data%20recovery/process2.html
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f15/www/lectures/11-memory-hierarchy.pdf

Rotating Disk Drive Features of Interest

Measures of Quality
▶ Capacity: bigger is usually better
▶ Seek Time: delay before a head assembly reaches an arbitrary

track of the disk that contains data
▶ Rotational Latency: time for disk to spin around to correct

position; faster rotation → lower Latency
▶ Transfer Rate: once correct read/write position is found, how

fast data moves between disk and RAM

Sequential vs Random Access
Due to the rotational nature of Magnetic Disks. . .
▶ Sequential reads/writes comparatively FAST
▶ Random reads/writes comparatively very SLOW

27

Solid State Drives

▶ No moving parts → speed
▶ Most use “flash” memory,

non-volatile circuitry
▶ Major drawback: limited

number of writes, disk
wears out eventually

▶ Reads faster than writes
▶ Sequential somewhat faster

than random access
▶ Expensive:

A 1TB internal 2.5-inch hard
drive costs between $40 and
$50, but as of this writing,
an SSD of the same capac-
ity and form factor starts at
$250. That translates into
– 4 to 5 cents/GB for HDD
– 25 cents/GB for the SSD.
PC Magazine, “SSD vs
HDD” by Tom Brant and
Joel Santo Domingo March
26, 2018

28

https://www.pcmag.com/article2/0,2817,2404258,00.asp
https://www.pcmag.com/article2/0,2817,2404258,00.asp
https://www.pcmag.com/article2/0,2817,2404258,00.asp
https://www.pcmag.com/article2/0,2817,2404258,00.asp

Tape Drives

▶ Slowest yet: store bits as
magnetic field on a piece of
“tape” a la 1980’s cassette
tape / video recorder

▶ Extremely cheap per GB so
mostly used in backup
systems

▶ Ex: CSELabs does nightly
backups of home directories,
recoverable from tape at
request to Operator

29

The I/O System Connects CPU and Peripherals

30

Terminology
Bus A collection of wires which allow communication

between parts of the computer. May be serial (single
wire) or parallel (several wires), must have a
communication protocol over it.

Bus Speed Frequency of the clock signal on a particular bus,
usually different between components/buses requiring
interface chips
CPU Frequency > Memory Bus > I/O Bus

Interface/Bridge Computing chips that manage communications
across the bus possibly routing signals to correct part
of the computer and adapting to differing speeds of
components

Motherboard A printed circuit board connects to connect CPU to
RAM chips and peripherals. Has buses present on it
to allow communication between parts. Form factor
dictates which components can be handled.

31

The Motherboard

Picture Source: Wikipedia
Live Props Courtesy of Free Geek Minneapolis

32

https://commons.wikimedia.org/wiki/File:ASRock_K7VT4A_Pro_Mainboard_Labeled_English.svg
https://www.freegeektwincities.org/

Memory Mapped I/O
▶ Modern systems are a collection of devices and

microprocessors
▶ CPU usually uses memory mapped I/O: read/write certain

memory addresses translated to communication with devices
on I/O bus

33

Direct Memory Access

▶ Communication received by other microprocessors like a Disk
Controller or Memory Management Unit (MMU)

▶ Other controllers may talk: Disk Controller loads data directly
into Main Memory via direct memory access

34

Interrupts and I/O
Recall access times

Place Time
L1 cache 0.5 ns
RAM 100 ns
Disk 10,000,000 ns

▶ While running Program
X, CPU reads an int
from disk into %rax

▶ Communicates to disk
controller to read from
file

▶ Rather than wait, OS
puts Program X to
“sleep”, starts running
program Y

▶ When disk controller completes
read, signals the CPU via an
interrupt, electrical signals
indicating an event

▶ OS handles interrupt, schedules
Program X as “ready to run”

35

Interrupts from Outside and Inside
▶ Examples of events that generate interrupts

▶ Integer divide by 0
▶ I/O Operation complete
▶ Memory address not in RAM (Page Fault)
▶ User generated: x86 instruction int 80

▶ Interrupts are mainly the business of the Operating System
▶ Usually cause generating program to immediately transfer

control to the OS for handling
▶ When building your own OS, must write “interrupt handlers”

to deal with above situations
▶ Divide by 0: signal program usually terminating it
▶ I/O Complete: schedule requesting program to run
▶ Page Fault: sleep program until page loaded
▶ User generated: perform system call

▶ User-level programs will sometimes get a little access to
interrupts via signals, a topic in many OS classes

36

