CMSC216: Memory Systems

Chris Kauffman

Last Updated:
Tue Nov 19 09:21:47 AM EST 2024

Logistics

Goals
» Cache vs DRAM Memory, Matrix Layout
» Permanent Storage Hardware

» Virtual Memory

. - 1
Assignments Reading Bryant/O’Hallaron
> Labll: Makefiles / Memory
. Ch Read? Topic
Strldes Ch6 The Memory Hierarchy
Ch6.1 skim Storage Technologies
» HW11: Cache Optimization Ch62 READ Locality
Ch 6.3 READ The Memory Hierarchy
. . Ch 6.4 opt Cache Memories
» P4: Due Friday, Makeup Ch 65 READ Writing Cache Friendly Code
H Ch 6.6 skim Impacts of Cache on Performance
Credlt POSted Cho9 Virtual Memory
Ch 9.1-6 skim VM Overview, Address Translation
Ch 9.7 opt Case Study
Ch 9.8 READ Memory mapping and mmap ()
Ch 9.9 READ Dynamic Memory Allocation
Ch 9.10 opt Garbage Collection

Ch 9.11 skim Memory Bugs in C Programs

Announcements

Thanksgiving Week Meetings
https://piazza.com/class/1zzvmmOhu9v228/post/1842
» Discussion Sections Canceled Mon 25-Nov
» Staff may hold extra office hours, check the office hours
schedule
» Lecture via Zoom Tue 26-Nov

https://piazza.com/class/lzzvmm0hu9v228/post/1842

Measuring Time in Code

» Measure CPU time with the standard clock() function;
measure time difference and convert to seconds

» Measure Wall (real) time with gettimeofday() or related
functions; fills struct with info on time of day (duh)

CPU Time

#include <time.h>

clock_t begin, end;
begin = clock(); // current cpu moment

do_something();
// later moment

end = clock();

double cpu_time =
((double) (end-begin)) / CLOCKS_PER_SEC;

Real (Wall) Time

#include <sys/time.h>

struct timeval tvl, tv2;
gettimeofday(&tvl, NULL); // early time

do_something() ;
gettimeofday(&tv2, NULL); // later time
double wall_time =

((tv2.tv_sec-tvl.tv_sec)) +
((tv2.tv_usec-tvl.tv_usec) / 1000000.0);

Exercise: Time and Throughput

Consider the following simple

loop to sum elements of an array

from stride_throughput.c

int *data = ...; // global array

int sum_simple(int len, int stride){

int sum = 0;

for(int i=0; i<len; i+=stride){

sum += datal[il;
}
return sum;

}

int main(){
int x1 = sum_simple(n,1);
int x2 = sum_simple(n,2);
int x3 = sum_simple(n,3);

// total time for each stride?
// throughput for each stride?

» Param stride controls step
size through loop

» Interested in two features of
the sum_simple () function:

1. Total Time to complete
2. Throughput:

Additions

Th hput =
roughpu Second

» How would one measure and
calculate these two in a
program?

P> As stride increases, predict
how Total Time and
Throughput change

Answers: Time and Throughput

Measuring Time/Throughput

Most interested in CPU time so

begin = clock();

sum_simple(length,stride);

end = clock();

cpu_time = ((double) (end-begin))
/ CLOCKS_PER_SEC;

throughput = ((double) length) /
stride /
cpu_time;

Time vs Throughput
As stride increases. . .

» Time decreases: doing fewer
additions (duh)

» Throughput decreases

Plot of Stride vs Throughput

250408

» Stride = 1: consecutive
memory accesses

» Stride = 16: jumps through
memory, more time

Memory Mountains from Bryant/O’Hallaron
» Varying stride for a fixed length leads to decreasing

performance, 2D plot

> Can also vary length for size of array to get a 3D plot
» lllustrates features of CPU/memory on a system

> The “Memory Mountain” on the cover of our textbook
> What interesting structure do you see?

CS:APP3e: Core i5-4440 (2013 Haswell)

Road throughput (WBs)

s
s
s

T
o
5126
“om
am

7 -
Stride (x8 bytes) 0 NGl size (oytes)

Mz

Raspberry Pi 3B (2016 ARM Cortex-A53)

Read throughput (WBs)

3000

2000

1000

. e
e 1286

- s
s .

e
2m size (bytes)

7
strde (x8 bytes) s
izam

CPU vs Memory Speed

>

>

Early Computing Systems had a CPU Chips and Memory
Chips, little if any data storage in the CPU (e.g. no registers)

CPU and Memory Chips ran at similar speeds / clock
frequencies: CPU would fetch data from Memory, perform
arithmetic, store answers back to Memory

Engineers found it easier to increase CPU Chip speed than
Memory Chip speed: could now perform 100s of arithmetic
operations in the time that a single Memory Fetch / Store
could take place

Registers and Cache were developed in response to the
growing speed difference between CPU and Memory Chips
Registers can be directly controlled by programmers (if the
code in Assembly)

Cache memory is (mostly) managed by the hardware itself,
the Main Memory System

Cache Favors Temporal and Spatial Locality

Hardware folks noticed programmers often write loops like
for(int i=0; i<len; i++){

sum += array[i];
}

which exhibits two Memory Locality features

1. Temporal Locality: memory recently used likely to be used
again soon (like sum and i used in every loop iteration)

2. Spatial Locality: nearby addresses to recently used memory
likely to be used (like arr[0] first then arr[1],arr[2])

Hardware engineers began adding chunks of Memory to CPUs to
exploit these code tendencies giving rise to Cache Memory

» Code that utilizes Cache well will run faster

The Memory Pyramid

Procossor SUPER FAST
EXPENSIVE
=)
FASTER
EXPENSIVE
EDO, SD-RAM, DDR-SDRAM, RD-RAM FAST
PRICED REASONABLY
and More.... AVERAGE CAPACITY
S50, Flash Drive AVERAGE SPEED

VIRTUAL MEM

A Simplified Computer Memory Hierarchy

— iz

Source

10

https://linux2me.wordpress.com/2017/09/15/linux-introduction-to-memory-management/

Numbers Everyone Should Know

> “Main Memory” is comprised of many different physical
devices that work together and have differing sizes/speeds
» Accessing memory at #4096 may involve some or all of. ..

» Several Levels of Cache Memory on CPU (SRAM)
» DRAM memory on separate chips
» Permanent storage (SSDs and HDDs)

Edited Excerpt of Jeff Dean's talk on data centers.

Reference Time Analogy
Register - Your brain

L1 cache reference 0.5 ns Your desk

L2 cache reference 7 ns Neighbor's Desk
DRAM memory reference 100 ns This Room

Disk seek 10,000,000 ns Salt Lake City

Big-O Analysis does NOT capture these; proficient programmers do

11

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/people/jeff/stanford-295-talk.pdf

Diagrams of Memory Interface and Cache Levels

CPU chip
Register file
Cache <:>) ALU
memory

: System bus Memory bus
= o l Mai
. ain
Bus interface <::::> bridge <::> memory

Source: Bryant/O'Hallaron CS:APP 3rd Ed.

Core 3 ¥ 5 Memory Controller

L1 cache
Core

}
’ Larger 12 !
1

cache

L3 unified cache
(shared by all cores)
I

| Main memory | Source: SO “Where exactly L1, L2 and L3 Caches
A pectve, Tird Eion located in computer?”

Shared L3 CacHe: .

12

https://superuser.com/questions/196143/where-exactly-l1-l2-and-l3-caches-located-in-computer
https://superuser.com/questions/196143/where-exactly-l1-l2-and-l3-caches-located-in-computer

Why isn't Everything Cache?

Metric 1985 1990 1995 2000 2005 2010 2015 2015/1985
SRAM $/MB 2,900 320 256 100 75 60 25 116
SRAM access (ns) 150 35 15 3 2 1.5 1.3 115
DRAM $/MB 880 100 30 1 0.1 0.06 0.02 44,000
DRAM access (ns) 200 100 70 60 50 40 20 10

Source: Bryant/O’'Hallaron CS:APP 3rd Ed., Fig 6.15, pg 603

1 bit SRAM = 6 transistors

WL

L T T

Vad

My b —[My

|

iy
N Mg
gll = H[My

BL

Figure 2.4: 6-T Static RAM

1 bit DRAM = 1 transistor + 1 capacitor

A
DLJ;{T_C

=

Figure 2.5: 1-T Dynamic RAM

“What Every Programmer Should Know
About Memory" by Ulrich Drepper, Red
Hat, Inc.
13

https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

Address
0x0000
0x0020
0x0040
0x0060
0x0080
0x00A0
0x00C0
OxO00EO
0x0100
0x0120
0x0140
0x0160

Main Memory

Diagram of Direct Mapped Cache

Line

Direct-Mapped Cache
Cache Data Block

91 92 93 94

61 62 63 64

31 32 33 34

81 82 83 84

11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44
51 52 53 54
61 62 63 64
71 72 73 74
81 82 83 84
91 92 93 94

101 102 103 104

111 112 113 114

121 122 123 124

Each region of memory maps
to exactly one cache line.

Source: Dive into Systems dot org, with modifications

14

https://diveintosystems.org/book/C11-MemHierarchy/caching.html

How big is your cache? Check Linux System special Files

1scpu Utility
Handy Linux program that

summarizes info on CPU(s)

> 1lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

Address sizes: 36 bits physical,
48 bits virtual

CPU(s): 4

Vendor ID: GenuineIntel

CPU family: 6

Model: 58

Model name: Intel(R) Core(TM)

i7-3667U CPU @ 2.00GHz

Lid cache: 64 KiB

L1i cache: 64 KiB
L2 cache: 512 KiB
L3 cache: 4 MiB

Vulnerability Meltdown: Mitigation;

Vulnerability Spectre vl: Mitigation ...

Detailed Hardware Info
Files under /sys/devices/. ..
show hardware info (caches)

> cd /sys/devices/system/cpu/cpul/cache/
> 1s
index0 indexl index2 index3 ...

> 1s index0/
number_of_sets type level size
ways_of_associativity ...

> cd indexO
> cat level type number_x* ways_* size
1 Data 64 8 32K

> cd ../index1
cat level type number_x ways_* size
1 Instruction 64 8 32K

v

> cd ../index3
cat level type number_x* ways_* size
3 Unified 8192 20 10240K

v

15

Exercise: 2D Arrays

> Several ways to construct “2D" arrays in C

» All must embed a 2D construct into 1-dimensional memory

» Consider the 2 styles below: how will the picture of memory

look different?

// REPEATED MALLOC
// allocate
int rows=100, cols=30;
int **mat =
malloc(rows * sizeof (intx*));

for(int i=0; i<rows; i++){
mat[i] = malloc(cols*sizeof (int));

}

// do work
mat[i] [j] = ...

// free memory

for(int i=0; i<rows; i++){
free(mat[i]);

}

free(mat);

// TWO MALLOCs

// allocate

int rows=100, cols=30;

int **mat =
malloc(rows * sizeof (intx*));

int *data =
malloc(rows*cols*sizeof (int));

for(int i=0; i<rows; i++){
mat[i] = data+i*cols;

}

// do work
mat[i][j] = ...

// free memory
free(data);

free(mat) ;

16

Answer: 2D Arrays

Repeated Mallocs

100*8 = 800 bytes

30*4 = 120 bytes

30*4 = 120 bytes 30*4 = 120 bytes

mat o 1 2 3 99 1 29 0 1 29 0 1 29
. row 2 row 1
row pointers oW0 lower address than row 1 higher address than row 2
'Two Mallocs
*30%4 =
100%8 = 800 bytes 100*30*4 = 12000 bytes
l —
Vl T 1
T T 1

IIIIIIIIIIII - CTT T T =T T=T]
mat data o 1 2 3 99 o 1 2 3

row pointers

single contiguous data array

17

Single Malloc Matrices

Somewhat common to use a 1D array as a 2D matrix as in
int *matrix =
malloc(rows*cols*sizeof (int));

int i=5, j=20;

int elem_ij = matrix[i*cols + j]; // retrieve element 1i,j
HWs / Labs / P4 will use this technique along with some structs
and macros to make it more readable:

matrix_t mat;
matrix_init(&mat, rows, cols);

int elij = MGET(mat,i,j);
// elij = mat.datal mat.cols*i + j]

MSET(mat,i,j, 55);
// mat.datal mat.colsxi + j] = 55;

18

Aside: Row-Major vs Col-Major Layout

» Many languages use Row-Major order for 2D arrays/lists

» C, Java, Python, Ocaml,...
» mat[i] is a contiguous row, mat[i] [j] is an element

» Numerically-oriented languages use Column-Major order
» Fortran, Matlab/Octave, R, Ocaml (?)...
» mat[j] is a contiguous column, mat [i] [j] is an element

» Being aware of language convention can increase efficiency

1 2 3 row-major

4 5] =¥ | 1 ‘ 2 ‘ 3 ‘ 4 ‘ by | L} | 7 | 8 ’ o ‘
7 8 G

1 2 3 column-major

4 |&5 [} — | 1 ‘ 4 ‘ 7 ‘ 2 5 | 8 | 3 | 6 ’ 2 ‘
7 8 &

Source: The Craft of Coding

19

https://craftofcoding.wordpress.com/2017/02/03/column-major-vs-row-major-arrays-does-it-matter/

Exercise: Matrix Summing

» How are the two codes below different?
» Are they doing the same number of operations?
» Which will run faster?

int sumR = O; int sumC = O;
for(int i=0; i<rows; i++){ for(int j=0; j<cols; j++){
for(int j=0; j<cols; j++){ for(int i=0; i<rows; i++){
sumR += mat[i] [j]; sumC += mat[i] [j];
} }

X X

20

Answer: Matrix Summing

» Show timing in matrix_timing.c
> sumR faster the sumC: caching effects

» Discuss timing functions used to determine duration of runs
> gcc -0g matrix_timing.c
> a.out 50000 10000
sumR: 1711656320 row-wise CPU time: 0.265 sec, Wall time: 0.265
sumC: 1711656320 col-wise CPU time: 1.307 sec, Wall time: 1.307
» sumR runs about 6 times faster than sumC

» Understanding why requires knowledge of the memory
hierarchy and cache behavior

21

(Optional) Tools to Measure Performance: perf

» The Linux perf tool is useful to measure performance of an
entire program

» Shows variety of statistics tracked by the kernel about things
like memory performance

» Examine examples involving the matrix_timing program:
sumR vs sumC

» Determine statistics that explain the performance gap
between these two?

22

(Optional Exercise): perf on sumR vs sumC

What stats below might explain the performance difference?

> perf stat $perfopts ./matrix_timing 8000 4000 row ## RUN sumR ROW SUMMING
sumR: 1227611136 row-wise CPU time: 0.019 sec, Wall time: 0.019

Performance counter stats for './matrix_timing 8000 4000 row': %SAMPLED
135,161,407 cycles:u (45.27%)
417,889,646 instructions:u # 3.09 insn per cycle (56.22%)
56,413,529 Lil-dcache-loads:u (55.96%)
3,843,602 Li-dcache-load-misses:u # 6.81% of all Li-dcache hits (50.41%)
28,153,429 Lil-dcache-stores:u (47.42%)
125 Lil-icache-load-misses:u (44.77%)
3,473,211 cache-references:u # last level of cache (56.22%)
1,161,006 cache-misses:u # 33.427 % of all cache refs (56.22%)

> perf stat $perfopts ./matrix_timing 8000 4000 col # RUN sumC COLUMN SUMMING
sumC: 1227611136 col-wise CPU time: 0.086 sec, Wall time: 0.086

Performance counter stats for './matrix_timing 8000 4000 col': %SAMPLED
372,203,024 cycles:u (40.60%)
404,821,793 instructions:u # 1.09 insn per cycle (67.23%)
61,990,626 Li-dcache-loads:u (60.21%)
39,281,370 Li-dcache-load-misses:u # 63.37% of all Li-dcache hits (45.66%)
23,886,332 Lil-dcache-stores:u (43.24%)
2,486 Lil-icache-load-misses:u (40.82%)
32,582,656 cache-references:u # last level of cache (59.38%)

1,894,514 cache-misses:u # 5.814 % of all cache refs (60.38%)

Answers: perf stats for sumR vs sumC, what's striking?

Observations
» Similar number of instructions between row/col versions
> #cycles lower for row version — higher insn per cycle

» L1l-dcache-misses: marked difference between row/col
version

» Last Level Cache Refs : many, many more in col version

» Col version: much time spent waiting for memory system to
feed in data to the processor

Notes

» The right-side percentages like (50.41%) indicate how much
of the time this feature is measured; some items can't be
monitored all the time.

» Specific perf invocation is in
10-memory-systems-code/measure-cache.sh

24

Flavors of Permanent Storage

» Have discussed a variety of fast memories which are small

P> At the bottom of the pyramid are disks: slow but large
memories, may contain copies of what is in higher parts of
memory pyramid

> These are persistent: when powered off, they retain
information

> Permanent storage often referred to as a “drive”

» Comes in many variants but these 3 are worth knowing about
in the modern era

1. Rotating Disk Drive
2. Solid State Drive
3. Magnetic Tape Drive

» Surveyed in the slides that follow

25

Ye Olde Rotating Disk

» Store bits “permanently” as
magnetized areas on special
platters

» Magnetic disks: moving
parts — slow

» Cheap per GB of space

Spindle

Arm Platters

Actuator

Electronics

(including a
processor
scsl and memory!)
connector

Image courtesy of Seagate Technology
Source: CS:APP Slides

HARD DRIVE DATA READ & WRITE
OPERATION MOTION DIAGRAM

Magoelized
data on disk

Tracks Disk

\ Motion 6F Stispénsion

Source: Realtechs.net

Read/write heads
move in unison
from cylinder to cylinder

Arm

Source: CS:APP Slides

26

http://www.cs.cmu.edu/afs/cs/academic/class/15213-f15/www/lectures/11-memory-hierarchy.pdf
http://www.realtechs.net/data%20recovery/process2.html
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f15/www/lectures/11-memory-hierarchy.pdf

Rotating Disk Drive Features of Interest

Measures of Quality
» Capacity: bigger is usually better

» Seek Time: delay before a head assembly reaches an arbitrary
track of the disk that contains data

» Rotational Latency: time for disk to spin around to correct
position; faster rotation — lower Latency

» Transfer Rate: once correct read/write position is found, how
fast data moves between disk and RAM

Sequential vs Random Access
Due to the rotational nature of Magnetic Disks. ..
» Sequential reads/writes comparatively FAST
» Random reads/writes comparatively very SLOW

27

Solid State Drives

» No moving parts — speed

» Most use “flash” memory,
non-volatile circuitry

» Major drawback: limited
number of writes, disk
wears out eventually

>

> Sequential somewhat faster

>

Reads faster than writes

than random access
Expensive:

A 1TB internal 2.5-inch hard
drive costs between $40 and
$50, but as of this writing,
an SSD of the same capac-
ity and form factor starts at
$250. That translates into

— 4 to 5 cents/GB for HDD
— 25 cents/GB for the SSD.

PC Magazine, “SSD vs
HDD” by Tom Brant and
Joel Santo Domingo March
26, 2018

28

https://www.pcmag.com/article2/0,2817,2404258,00.asp
https://www.pcmag.com/article2/0,2817,2404258,00.asp
https://www.pcmag.com/article2/0,2817,2404258,00.asp
https://www.pcmag.com/article2/0,2817,2404258,00.asp

Tape Drives

» Slowest yet: store bits as
magnetic field on a piece of
“tape” a la 1980's cassette

(D}

tape / video recorder -

» Extremely cheap per GB so
mostly used in backup
systems

» Ex: CSELabs does nightly
backups of home directories,
recoverable from tape at
request to Operator

29

The 1/O System Connects CPU and Peripherals

CPU chip

Register file

1C

Bus interface

ALU

System bus

Memory bus

r's
<) o
bridge

—

ﬁ

<

L

r =1

usB Graphics
controller adapter
Mouse Keyboard Monitor

Disk
controller

Main
memory

HH=>

Expansion slots for
other devices such
as network adapters.

30

Terminology

Bus A collection of wires which allow communication
between parts of the computer. May be serial (single
wire) or parallel (several wires), must have a
communication protocol over it.

Bus Speed Frequency of the clock signal on a particular bus,
usually different between components/buses requiring
interface chips
CPU Frequency > Memory Bus > 1/0 Bus

Interface/Bridge Computing chips that manage communications
across the bus possibly routing signals to correct part
of the computer and adapting to differing speeds of
components

Motherboard A printed circuit board connects to connect CPU to
RAM chips and peripherals. Has buses present on it
to allow communication between parts. Form factor
dictates which components can be handled.

31

The Motherboard

Northbridge (with heatsink) ~ Southbridge
IDE Connector (x2)
DRAM Memory Slot (x2)

20-pin ATX Power
Connector

PCI Slot (x5)

CMOS Backup
Battery

Heatsink
Mounting

. Connectors For
Points

Integrated Peripherals
PS/2 Keyboard and Mouse, Serial Port,
Parallel Port, USB (x6), Ethernet, Audio (x3)

CPU Socket

Picture Source: Wikipedia
Live Props Courtesy of Free Geek Minneapolis

32

https://commons.wikimedia.org/wiki/File:ASRock_K7VT4A_Pro_Mainboard_Labeled_English.svg
https://www.freegeektwincities.org/

Memory Mapped I/0

> Modern systems are a collection of devices and
microprocessors

» CPU usually uses memory mapped 1/0: read/write certain
memory addresses translated to communication with devices

on 1/0 bus
CPU chip
Register file CPU initiates a disk read by writing a
command, logical block number, and
AL destination memory address to a port
]:I (address) associated with disk controller.

Busi AN Main
us interface \I—I/L memory
< ﬁ F IO bus >

Graphics Disk
controller adapter

controller
mouse keyboard Monitor -L

Bryant ¥e

33

Direct Memory Access

» Communication received by other microprocessors like a Disk
Controller or Memory Management Unit (MMU)

» Other controllers may talk: Disk Controller loads data directly
into Main Memory via direct memory access

CPU chip

Registerfie Disk controller reads the sector and

performs a direct memory access
AL (DMA) transfer into main memory.

1T
ﬁ F /0 bus

T ¥

use Graphics Disk
controller adapter contioller

Mouse Keyboard Monitor -
Eryant and O'Hallaron,Computer Systems: & Programmer's Perspective, Third dition

Interrupts and 1/0O

Recall access times

Place Time

L1 cache 0.5 ns
RAM 100 ns
Disk 10,000,000 ns

» While running Program
X, CPU reads an int
from disk into %rax

» Communicates to disk
controller to read from
file

» Rather than wait, OS
puts Program X to
“sleep”, starts running
program Y

CPU chip

Regiterfle the disk controller notifies the CPU

ALU with an interrupt (i.e., asserts a
special “interrupt” pin on the CPU)

N Main
[K= K]
] ﬁ r 10 bus >
use Graphics Disk
controller adapter controller

Mouse Keyboard Monitor =

14 O'allaron, ComputerSystems: A Programmer'sPerspecive, Thid Edion W

» When disk controller completes
read, signals the CPU via an
interrupt, electrical signals
indicating an event

» OS handles interrupt, schedules
Program X as “ready to run”

When the DMA transfer completes,

35

Interrupts from Outside and Inside

» Examples of events that generate interrupts

> Integer divide by 0

» |/O Operation complete

» Memory address not in RAM (Page Fault)
» User generated: x86 instruction int 80

» Interrupts are mainly the business of the Operating System

» Usually cause generating program to immediately transfer
control to the OS for handling
» When building your own OS, must write “interrupt handlers”
to deal with above situations
» Divide by 0: signal program usually terminating it
» |/O Complete: schedule requesting program to run
» Page Fault: sleep program until page loaded
» User generated: perform system call
» User-level programs will sometimes get a little access to
interrupts via signals, a topic in many OS classes

