CMSC216: Binary Floating Point Numbers

Chris Kauffman

Last Updated: Tue Oct 1 09:12:57 AM EDT 2024

Logistics

Reading Bryant/O'Hallaron

- ▶ Ch 2.1-3: Integers
- ▶ Ch 2.4-5: Floats (Optional)
- ▶ 2021 Quick Guide to GDB

Goals

- ▶ Finish Ints / Bitwise Ops
- ▶ Briefily: Floating Point layout
- ▶ Thu: Assembly

Assignments

- ▶ Lab05: Bits and GDB
- ▶ HW05: Assembly Intro
- ▶ Project 2: Bitwise Ops, GDB, C Application
- P2 will go up within the next day

Grading on Exam 1 / Project 1 ongoing, release grades towards end of week

Announcements

Midterm Feedback Survey

- ▶ Available on Canvas; Anonymous Feedback
- ▶ Worth 1 Full Engagement Point (like labs)
- ▶ Due 11:59pm Wed 02-Oct

Exam 1 Makeup

- ▶ Prof K has emailed all students with permission to make up exam 1 about scheduling
- ▶ If you expected to take the makeup exam and have not heard from Prof K **email him ASAP**

Don't Give Up, Stay Determined!

- \blacktriangleright If Project 1 / Exam 1 went awesome, count yourself lucky
- ▶ If things did not go well, Don't Give Up
- \triangleright Spend some time contemplating why things didn't go well, talk to course staff about it, learn from any mistakes
- ▶ There is a LOT of semester left and plenty of time to recover from a bad start

Note on Float Coverage

- \blacktriangleright Floating point layout is complex and interesting but...
- ▶ It's not a core topic that will appear on any exams, only tangentially on assignments
- \triangleright Our coverage will be brief, examine slides / textbook if you want more depth
- ▶ GOAL: Demonstrate that (1) Real numbers can be approximated and (2) doing so uses bits in a very different way than integer representations

Parts of a Fractional Number

The meaning of the "decimal point" is as follows:

$$
123.406_{10} = 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0} + 123 = 100 + 20 + 3
$$

$$
4 \times 10^{-1} + 0 \times 10^{-2} + 6 \times 10^{-3} \quad 0.406 = \frac{4}{10} + \frac{6}{1000}
$$

= 123.406₁₀

Changing to base 2 induces a "binary point" with similar meaning:

$$
110.1012 = 1 \times 22 + 1 \times 21 + 0 \times 20 + 6 = 4 + 2
$$

$$
1 \times 2-1 + 0 \times 2-2 + 1 \times 2-3 0.625 = \frac{1}{2} + \frac{1}{8}
$$

= 6.625₁₀

One could represent fractional numbers with a **fixed point** e.g.

- \triangleright 32 bit fractional number with
- ▶ 10 bits left of Binary Point (integer part)
- ▶ 22 bits right of Binary Point (fractional part)

BUT most applications require a more flexible scheme

Scientific Notation for Numbers

"Scientific" or "Engineering" notation for numbers with a fractional part is

- ▶ **Always** includes one **non-zero** digit left of decimal place
- ▶ Has some **significant** digits after the decimal place
- ▶ Multiplies by a **power of 10** to get actual number

Binary Floating Point Layout Uses Scientific Convention

- \triangleright Some bits for integer/fractional part
- ▶ Some bits for exponent part
- \blacktriangleright All in base 2: 1's and 0's, powers of 2

Conversion Example

Below steps convert a decimal number to a fractional binary number equivalent then adjusts to scientific representation. float $f1 = -248.75$:

 $7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \quad 0 \quad -1 \quad -2$ $-248.75 = -(128+64+32+16+8+0+0+0)$. $(1/2+1/4)$ $= -11111000.11 *2^0$ 76543210 12 $= -1111100.011 *2^1$ 6543210 123 $= -111110.0011 *2^2$ 543210 1234 ... MANTISSA EXPONENT $= -1.111100011 * 2^2$ 0 123456789 Mantissa *≡* Significand *≡* Fractional Part

Principle and Practice of Binary Floating Point Numbers

- ▶ In early computing, computer manufacturers used similar principles for floating point numbers but varied specifics
- ▶ Example of Early float data/hardware
	- \blacktriangleright Univac: 36 bits, 1-bit sign, 8-bit exponent, 27-bit significand¹
	- \blacktriangleright IBM: 32 bits, 1-bit sign, 7-bit exponent, 24-bit significand²
- ▶ Manufacturers implemented circuits with different rounding behavior, with/without infinity, and other inconsistencies
- ▶ Troublesome for reliability: code produced different results on different machines
- ▶ This was resolved with the adoption of the IEEE 754 Floating Point Standard which specifies
	- ▶ Bit layout of 32-bit float and 64-bit double
	- \blacktriangleright Rounding behavior, special values like Infinity
- ▶ Turing Award to William Kahan for his work on the standard

 α

IEEE 754 Format: The Standard for Floating Point

- ▶ Most commonly implemented format for floating point numbers in hardware to do arithmetic: processor has physical circuits to add/mult/etc. for this bit layout of floats
- ▶ Numbers/Bit Patterns divided into three categories

Example float Layout of -248.75: float_examples.c

not in binary layout

Normalized Floating Point: General Case

- ▶ A "normalized" floating point number is in the standard range for float/double, bit layout follows previous slide
- Example: $-248.75 = -1.111100011 * 2^77$

Exponent is in **Bias Form** (not Two's Complement)

- ▶ Unsigned positive integer minus constant **bias number**
- ▶ **Consequence**: exponent of 0 is not bitstring of 0's
- ▶ **Consequence**: tiny exponents like -125 close to bitstring of 0's; this makes resulting number close to 0
- \triangleright 8-bit exponent 1000 0110 = 128+4+2 = 134 so exponent value is $134 - 127 = 7$

Integer and Mantissa Parts

- ▶ The leading 1 before the binary point is **implied** so does not show up in the bit string
- \blacktriangleright Remaining fractional/mantissa portion shows up in the low-order bits 12

Fixed Bit Standards for Floating Point

IEEE Standard Layouts

Standard allows hardware to be created that is as efficient as possible to do calculation on these numbers

Consequences of Fixed Bits

- ▶ Since a fixed # of bit is used, **some numbers cannot be exactly represented**, happens in any numbering system:
- \blacktriangleright Base 10 and Base 2 cannot represent $\frac{1}{3}$ in finite digits

► Base 2 cannot represent
$$
\frac{1}{10}
$$
 in finite digits
float f = 0.1;
printf("0.1 = %.20e\n", f);
0.1 = 1.00000001490116119385e-01
Try show float.c to see this in action

Exercise: Quick Checks

- 1. What distinct parts are represented by bits in a floating point number (according to IEEE)
- 2. What is the "bias" of the exponent for 32-bit floats
- 3. Represent 7.125 in binary using "binary point" notation
- 4. Lay out 7.125 in IEEE-754 format
- 5. What does the number 1.0 look like as a float?

Source: IEEE-754 Tutorial, www.puntoflotante.net

The diagram above may help in recalling IEEE 754 layout

Special Cases: See float examples.c

Special Values

- ▶ Infinity: exponent bits all 1, fraction all 0, sign bit indicates +*∞* or *−∞*
- \blacktriangleright Infinity results from overflow/underflow or certain ops like float $x = 1.0 / 0.0$;
- ▶ #include <math.h> gets macro INFINITY and -INFINITY
- ▶ **NaN**: not a number, exponent bits all 1, fraction has some 1s
- ▶ Errors in floating point like 0.0 / 0.0

Denormalized values: Exponent bits all 0

- \triangleright Fractional/Mantissa portion evaluates without implied leading one, still an unsigned integer though
- **Exponent is** $Bias + 1$: 2^{-126} for float
- ▶ Result: very small numbers close to zero, smaller than any other representation, degrade uniformly to 0
- \triangleright Zero: bit string of all 0s, optional leading 1 (*negative zero*);

Other Float Notes

Approximations and Roundings

- ▶ Approximate $\frac{2}{3}$ with 4 digits, usually 0.6667 with standard rounding in base 10
- ▶ Similarly, some numbers cannot be exactly represented with fixed number of bits: $\frac{1}{10}$ approximated
- \blacktriangleright IEEE 754 specifies various rounding modes to approximate numbers

Clever Engineering

- ▶ IEEE 754 allows floating point numbers to sort using signed integer sorting routines
- ▶ Bit patterns for float follows are ordered nearly the same as bit patterns for signed int
- ▶ Integer comparisons are usually fewer clock cycles than floating comparisons

Sidebar: The Weird and Wonderful Union

- ▶ Bitwise operations like & are not valid for float/double
- ▶ Can use pointers/casting to get around this OR. . .
- ▶ Use a **union**: somewhat unique construct to C
- ▶ Defined like a struct with several fields
- ▶ BUT fields occupy the same memory location (!?!)
- ▶ Allows one to treat a byte position as multiple different types, ex: int / float / char[]
- \blacktriangleright Memory size of the union is the **max** of its fields

```
// union.c
typedef union { // shared memory
  float fl; // float 4 bytes
  int in; // int 4 bytes
char ch[4]; \frac{1}{4} array 4 bytes<br>} flint t; \frac{1}{4} bytes total
                \frac{1}{4} bytes total (?!)// all fields are in the same memory
// so max of (4,4,4) rather than sum
int main(){
  flint t flint:
  flint.in = 0xC378C000:
  printf("%.4f\n", flint.fl);
  printf("%08x %d\n",flint.in,flint.in);
  for(int i=0; i<4; i++){
    unsigned char c = flint.ch[i];
    printf("%d: %02x '%c'\n",i,c,c);
  }
}
 Symbol | Mem | Val
|-------------------+-------+------|
 | flint.ch[3] | #1027 | 0xC3 |
 | flint.ch[2] | #1026 | 0x78 |
 | flint.ch[1] | #1025 | 0xC0 |
 | flint.in/fl/ch[0] | #1024 | 0x00 |
 \frac{1}{1} \frac{1}{1020} \frac{1}{2}
```
Floating Point Operation Efficiencies

- ▶ Floating Point Operations per Second, **FLOPS** is a major measure for numerical code/hardware efficiency
- ▶ Often used to benchmark and evaluate scientific computer resources, (e.g. top super computers in the world)
- ▶ Tricky to evaluate because of
	- ▶ A single FLOP (add/sub/mul/div) may take 3 clock cycles to finish: **latency 3**
	- ▶ Another FLOP **can start** before the first one finishes: **pipelined**
	- ▶ Enough FLOPs lined up can get **average 1 FLOP per cycle**
	- ▶ FP Instructions may automatically operate on multiple FPs stored in memory to feed pipeline: **vectorized ops**
	- ▶ Generally referred to as **superscalar**
	- ▶ Processors schedule things **out of order** too
- ▶ All of this makes micro-evaluation error-prone and pointless
- ▶ Run a real application like an N-body simulation and compute

 $FLOPS = \frac{number of floating ops done}{m}$

time taken in seconds

https://www.top500.org/lists/top500/2022/06/

*: An average US Home uses 909 kWh of power per month

https://www.top500.org/lists/top500/2022/06/

*: An average US Home uses 909 kWh of power per month

https://www.top500.org/lists/top500/2021/06/

https://www.top500.org/lists/top500/2020/06/

https://www.top500.org/lists/top500/2020/06/

https://www.top500.org/list/2019/11/

https://www.top500.org/list/2018/11/

https://www.top500.org/lists/2017/11/