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Logistics

Reading Bryant/O’Hallaron
▶ Ch 2.1-3: Integers
▶ Ch 2.4-5: Floats (Optional)
▶ 2021 Quick Guide to GDB

Goals
▶ Finish Ints / Bitwise Ops
▶ Briefily: Floating Point

layout
▶ Thu: Assembly

Assignments
▶ Lab05: Bits and GDB
▶ HW05: Assembly Intro
▶ Project 2: Bitwise Ops,

GDB, C Application
P2 will go up within the next day

Grading on Exam 1 / Project 1 ongoing, release grades towards
end of week
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https://www-users.cs.umn.edu/~kauffman/tutorials/gdb


Announcements

Midterm Feedback Survey
▶ Available on Canvas; Anonymous Feedback
▶ Worth 1 Full Engagement Point (like labs)
▶ Due 11:59pm Wed 02-Oct

Exam 1 Makeup
▶ Prof K has emailed all students with permission to make up

exam 1 about scheduling
▶ If you expected to take the makeup exam and have not heard

from Prof K email him ASAP
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Don’t Give Up, Stay Determined!

▶ If Project 1 / Exam 1 went awesome, count yourself lucky
▶ If things did not go well, Don’t Give Up
▶ Spend some time contemplating why things didn’t go well,

talk to course staff about it, learn from any mistakes
▶ There is a LOT of semester left and plenty of time to recover

from a bad start
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Note on Float Coverage

▶ Floating point layout is complex and interesting but. . .
▶ It’s not a core topic that will appear on any exams, only

tangentially on assignments
▶ Our coverage will be brief, examine slides / textbook if you

want more depth
▶ GOAL: Demonstrate that (1) Real numbers can be

approximated and (2) doing so uses bits in a very different
way than integer representations
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Parts of a Fractional Number
The meaning of the “decimal point” is as follows:

123.40610 =1 × 102 + 2 × 101 + 3 × 100+ 123 = 100 + 20 + 3

4 × 10−1 + 0 × 10−2 + 6 × 10−3 0.406 = 4
10

+ 6
1000

=123.40610

Changing to base 2 induces a “binary point” with similar meaning:

110.1012 =1 × 22 + 1 × 21 + 0 × 20+ 6 = 4 + 2

1 × 2−1 + 0 × 2−2 + 1 × 2−3 0.625 = 1
2

+ 1
8

=6.62510

One could represent fractional numbers with a fixed point e.g.
▶ 32 bit fractional number with
▶ 10 bits left of Binary Point (integer part)
▶ 22 bits right of Binary Point (fractional part)

BUT most applications require a more flexible scheme
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Scientific Notation for Numbers
“Scientific” or “Engineering” notation for numbers with a
fractional part is

Standard Scientific printf("%.4e",x);
123.456 1.23456 × 102 1.2346e+02

50.01 5.001 × 101 5.0010e+01
3.14159 3.14159 × 100 3.1416e+00
0.54321 5.4321 × 10-1 5.4321e-01
0.00789 7.89 × 10-3 7.8900e-03

▶ Always includes one non-zero digit left of decimal place
▶ Has some significant digits after the decimal place
▶ Multiplies by a power of 10 to get actual number

Binary Floating Point Layout Uses Scientific Convention
▶ Some bits for integer/fractional part
▶ Some bits for exponent part
▶ All in base 2: 1’s and 0’s, powers of 2
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Conversion Example
Below steps convert a decimal number to a fractional binary
number equivalent then adjusts to scientific representation.
float fl = -248.75;

7 6 5 4 3 2 1 0 -1 -2
-248.75 = -(128+64+32+16+8+0+0+0).(1/2+1/4)

= -11111000.11 *2^0
76543210 12

= -1111100.011 *2^1
6543210 123

= -111110.0011 *2^2
543210 1234
...

MANTISSA EXPONENT
= -1.111100011 * 2^7

0 123456789
Mantissa ≡ Significand ≡ Fractional Part
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Principle and Practice of Binary Floating Point Numbers
▶ In early computing, computer manufacturers used similar

principles for floating point numbers but varied specifics
▶ Example of Early float data/hardware

▶ Univac: 36 bits, 1-bit sign, 8-bit exponent, 27-bit significand1

▶ IBM: 32 bits, 1-bit sign, 7-bit exponent, 24-bit significand2

▶ Manufacturers implemented circuits with different rounding
behavior, with/without infinity, and other inconsistencies

▶ Troublesome for reliability: code produced different results on
different machines

▶ This was resolved with the adoption of the IEEE 754 Floating
Point Standard which specifies
▶ Bit layout of 32-bit float and 64-bit double
▶ Rounding behavior, special values like Infinity

▶ Turing Award to William Kahan for his work on the standard
1Floating Point Arithmetic
2IBM Hexadecimal Floats
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https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/Turing_Award
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IEEE 754 Format: The Standard for Floating Point
float double Property

32 64 Total bits
1 1 Bits for sign (1 neg / 0 pos)
8 11 Bits for Exponent multiplier (power of 2)

23 52 Bits for Fractional part or mantissa
7.22 15.95 Decimal digits of accuracy3

▶ Most commonly implemented format for floating point
numbers in hardware to do arithmetic: processor has physical
circuits to add/mult/etc. for this bit layout of floats

▶ Numbers/Bit Patterns divided into three categories

Category Description Exponent
Normalized most common like 1.0 and -9.56e37 mixed 0/1
Denormalized very close to zero and 0.0 all 0’s
Special extreme/error values like Inf and NaN all 1’s

3Wikipedia: IEEE 754
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https://en.wikipedia.org/wiki/IEEE_754\#Basic_and_interchange_formats


Example float Layout of -248.75: float_examples.c

Source: IEEE-754 Tutorial, www.puntoflotante.net

Color: 8-bit blocks, Negative: highest bit, leading 1

Exponent: high 8 bits, 27 encoded with
bias of -127

1000_0110 - 0111_1111
= 128+4+2 - 127
= 134 - 127
= 7

Fractional/Mantissa portion is
1.111100011...
^ |||||||||
| explicit low 23 bits
|
implied leading 1
not in binary layout
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http://www.puntoflotante.net/FLOATING-POINT-FORMAT-IEEE-754.htm


Normalized Floating Point: General Case
▶ A “normalized” floating point number is in the standard range

for float/double, bit layout follows previous slide
▶ Example: -248.75 = -1.111100011 * 2^7

Exponent is in Bias Form (not Two’s Complement)
▶ Unsigned positive integer minus constant bias number
▶ Consequence: exponent of 0 is not bitstring of 0’s
▶ Consequence: tiny exponents like -125 close to bitstring of

0’s; this makes resulting number close to 0
▶ 8-bit exponent 1000 0110 = 128+4+2 = 134

so exponent value is 134 - 127 = 7

Integer and Mantissa Parts
▶ The leading 1 before the binary point is implied so does not

show up in the bit string
▶ Remaining fractional/mantissa portion shows up in the

low-order bits 12



Fixed Bit Standards for Floating Point
IEEE Standard Layouts

Kind Sign Exponent Mantissa
Bit Bits Bias Exp Range Bits

float 31 (1) 30-23 (8 bits) -127 -126 to +127 22-0 (23 bits)
double 63 (1) 62-52 (11 bits) -1023 -1022 to +1023 51-0 (52 bits)

Standard allows hardware to be created that is as efficient as
possible to do calculation on these numbers

Consequences of Fixed Bits
▶ Since a fixed # of bit is used, some numbers cannot be

exactly represented, happens in any numbering system:
▶ Base 10 and Base 2 cannot represent 1

3 in finite digits
▶ Base 2 cannot represent 1

10 in finite digits
float f = 0.1;
printf("0.1 = %.20e\n",f);
0.1 = 1.00000001490116119385e-01

Try show_float.c to see this in action
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Exercise: Quick Checks
1. What distinct parts are represented by bits in a floating point

number (according to IEEE)
2. What is the “bias” of the exponent for 32-bit floats
3. Represent 7.125 in binary using “binary point” notation
4. Lay out 7.125 in IEEE-754 format
5. What does the number 1.0 look like as a float?

Source: IEEE-754 Tutorial, www.puntoflotante.net

The diagram above may help in recalling IEEE 754 layout
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Special Cases: See float_examples.c
Special Values
▶ Infinity: exponent bits all 1, fraction all 0, sign bit indicates

+∞ or −∞
▶ Infinity results from overflow/underflow or certain ops like

float x = 1.0 / 0.0;
▶ #include <math.h> gets macro INFINITY and -INFINITY
▶ NaN: not a number, exponent bits all 1, fraction has some 1s
▶ Errors in floating point like 0.0 / 0.0

Denormalized values: Exponent bits all 0
▶ Fractional/Mantissa portion evaluates without implied leading

one, still an unsigned integer though
▶ Exponent is Bias + 1: 2-126 for float
▶ Result: very small numbers close to zero, smaller than any

other representation, degrade uniformly to 0
▶ Zero: bit string of all 0s, optional leading 1 (negative zero);
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Other Float Notes

Source: XKCD #217

Approximations and Roundings
▶ Approximate 2

3 with 4 digits,
usually 0.6667 with standard
rounding in base 10

▶ Similarly, some numbers cannot
be exactly represented with fixed
number of bits: 1

10 approximated
▶ IEEE 754 specifies various

rounding modes to approximate
numbers

Clever Engineering
▶ IEEE 754 allows floating point

numbers to sort using signed
integer sorting routines

▶ Bit patterns for float follows are
ordered nearly the same as bit
patterns for signed int

▶ Integer comparisons are usually
fewer clock cycles than floating
comparisons
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https://xkcd.com/217/
http://www.exploringbinary.com/why-0-point-1-does-not-exist-in-floating-point/
https://www.boost.org/doc/libs/1_59_0/libs/sort/doc/html/sort/sort_hpp/float_sort.html
https://www.boost.org/doc/libs/1_59_0/libs/sort/doc/html/sort/sort_hpp/float_sort.html


Sidebar: The Weird and Wonderful Union
▶ Bitwise operations like & are

not valid for float/double
▶ Can use pointers/casting to

get around this OR. . .
▶ Use a union: somewhat

unique construct to C
▶ Defined like a struct with

several fields
▶ BUT fields occupy the same

memory location (!?!)
▶ Allows one to treat a byte

position as multiple different
types, ex: int / float /
char[]

▶ Memory size of the union is
the max of its fields

// union.c
typedef union { // shared memory

float fl; // float 4 bytes
int in; // int 4 bytes
char ch[4]; // array 4 bytes

} flint_t; // 4 bytes total (?!)
// all fields are in the same memory
// so max of (4,4,4) rather than sum

int main(){
flint_t flint;
flint.in = 0xC378C000;
printf("%.4f\n", flint.fl);
printf("%08x %d\n",flint.in,flint.in);
for(int i=0; i<4; i++){

unsigned char c = flint.ch[i];
printf("%d: %02x '%c'\n",i,c,c);

}
}
| Symbol | Mem | Val |
|-------------------+-------+------|
| flint.ch[3] | #1027 | 0xC3 |
| flint.ch[2] | #1026 | 0x78 |
| flint.ch[1] | #1025 | 0xC0 |
| flint.in/fl/ch[0] | #1024 | 0x00 |
| i | #1020 | ? |
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Floating Point Operation Efficiencies
▶ Floating Point Operations per Second, FLOPS is a major

measure for numerical code/hardware efficiency
▶ Often used to benchmark and evaluate scientific computer

resources, (e.g. top super computers in the world)
▶ Tricky to evaluate because of

▶ A single FLOP (add/sub/mul/div) may take 3 clock cycles to
finish: latency 3

▶ Another FLOP can start before the first one finishes:
pipelined

▶ Enough FLOPs lined up can get average 1 FLOP per cycle
▶ FP Instructions may automatically operate on multiple FPs

stored in memory to feed pipeline: vectorized ops
▶ Generally referred to as superscalar
▶ Processors schedule things out of order too

▶ All of this makes micro-evaluation error-prone and pointless
▶ Run a real application like an N-body simulation and compute

FLOPS = number of floating ops done
time taken in seconds
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Top 5 Super Computers Worldwide, June 2023
Rmax Rpeak Power*

Rank System #Cores (TFlop/s) (TFlop/s) (kW)
1 Frontier, USA / Oak Ridge 8,699,904 1,194.00 1,679.82 22,703

Cray EX235a, AMD EPYC 2GHz
(x86-64)

2 Fugaku, Japan / Fujitsu 7,630,848 442,010.0 537.21 29,899
Fujitsu A64FX 2.2GHz
(Arm)

3 LUMI Finland / EuroHPC 2,220,288 309.10 428.70 6,016
Cray EX235a, AMD EPYC 2GHz
(x86-64)

4 Leonardo Italy / EuroHPC 1,824,768 238.70 304.47 7,404

5 Summit United States 2,414,592 148,600.0 200,794.9 10,096
IBM POWER9 22C 3.07GHz
(Power)

https://www.top500.org/lists/top500/2022/06/
*: An average US Home uses 909 kWh of power per month
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Top 5 Super Computers Worldwide, June 2022
Rmax Rpeak Power*

Rank System #Cores (TFlop/s) (TFlop/s) (kW)
1 Frontier, USA / Oak Ridge 8,730,112 1,102.00 1,685.65 21,100

Cray EX235a, AMD EPYC 2GHz
(x86-64)

2 Fugaku, Japan / Fujitsu 7,630,848 442,010.0 537,212.0 29,899
Fujitsu A64FX 2.2GHz
(Arm)

3 LUMI Finland / EuroHPC 1,110,144 151.90 214.35 2,942
Cray EX235a, AMD EPYC 2GHz
(x86-64)

4 Summit United States 2,414,592 148,600.0 200,794.9 10,096
IBM POWER9 22C 3.07GHz
(Power)

5 Sierra United States 1,572,480 94,640.0 125,712.0 7,438
IBM POWER9 22C 3.1GHz
(Power)

https://www.top500.org/lists/top500/2022/06/
*: An average US Home uses 909 kWh of power per month
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Top 5 Super Computers Worldwide, June 2021

Rmax Rpeak Power
Rank System #Cores (TFlop/s) (TFlop/s) (kW)

1 Fugaku, Japan / Fujitsu 7,630,848 442,010.0 537,212.0 29,899
Fujitsu A64FX 2.2GhZ
(Arm)

2 Summit United States 2,414,592 148,600.0 200,794.9 10,096
IBM POWER9 22C 3.07GHz
(Power)

3 Sierra United States 1,572,480 94,640.0 125,712.0 7,438
IBM POWER9 22C 3.1GHz
(Power)

4 Sunway TaihuLight China 10,649,600 93,014.6 125,435.9 15,371
Sunway SW26010
(custom RISC)

5 Perlmutter, United States 706,304 64,590.0 89,794.5 2,528
AMD EPYC 2.45GHz, Cray
(x86-64)

https://www.top500.org/lists/top500/2021/06/
21
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Top 5 Super Computers Worldwide, Nov 2020

Rmax Rpeak Power
Rank System #Cores (TFlop/s) (TFlop/s) (kW)

1 Fugaku, Japan / Fujitsu 7,299,072 415,530.0 513,854.7 28,335
Fujitsu A64FX 2.2GhZ
(Arm)

2 Summit United States 2,397,824 143,500.0 200,794.9 10,096
IBM POWER9 22C 3.07GHz
(Power)

3 Sierra United States 1,572,480 94,640.0 125,712.0 7,438
IBM POWER9 22C 3.1GHz
(Power)

4 Sunway TaihuLight China 10,649,600 93,014.6 125,435.9 15,371
Sunway SW26010
(custom RISC)

5 Selene USA, NVIDIA/AMD 555,520 63,460.0 79,215.0 2,646
AMD EPYC 7742 64C 2.25GHz
(x86-64)

https://www.top500.org/lists/top500/2020/06/
22
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Top 5 Super Computers Worldwide, June 2020

Rmax Rpeak Power
Rank System #Cores (TFlop/s) (TFlop/s) (kW)

1 Fugaku, Japan / Fujitsu 7,299,072 415,530.0 513,854.7 28,335
Fujitsu A64FX 2.2GhZ
(Arm)

2 Summit United States 2,397,824 143,500.0 200,794.9 10,096
IBM POWER9 22C 3.07GHz
(Power)

3 Sierra United States 1,572,480 94,640.0 125,712.0 7,438
IBM POWER9 22C 3.1GHz
(Power)

4 Sunway TaihuLight China 10,649,600 93,014.6 125,435.9 15,371
Sunway SW26010
(custom RISC)

5 Tianhe-2A China 4,981,760 61,444.5 100,678.7 18,482
Intel Xeon 2.2GHz
(x86-64)

https://www.top500.org/lists/top500/2020/06/
23
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Top 5 Super Computers Worldwide, Nov 2019

Rmax Rpeak Power
Rank System #Cores (TFlop/s) (TFlop/s) (kW)

1 Summit United States 2,397,824 143,500.0 200,794.9 9,783
IBM POWER9 22C 3.07GHz

2 Sierra United States 1,572,480 94,640.0 125,712.0 7,438
IBM POWER9 22C 3.1GHz,

3 Sunway TaihuLight China 10,649,600 93,014.6 125,435.9 15,371
Sunway MPP

4 Tianhe-2A China 4,981,760 61,444.5 100,678.7 18,482
Xeon 2.2GHz

5 Frontera, United States 448,448 23,516.4 38,745.9 ??
Dell 6420, Xeons 2.7GHz

https://www.top500.org/list/2019/11/
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Top 5 Super Computers Worldwide, Nov 2018

Rmax Rpeak Power
Rank System #Cores (TFlop/s) (TFlop/s) (kW)

1 Summit United States 2,397,824 143,500.0 200,794.9 9,783
IBM POWER9 22C 3.07GHz

2 Sierra United States 1,572,480 94,640.0 125,712.0 7,438
IBM POWER9 22C 3.1GHz,

3 Sunway TaihuLight China 10,649,600 93,014.6 125,435.9 15,371
Sunway MPP

4 Tianhe-2A China 4,981,760 61,444.5 100,678.7 18,482
TH-IVB-FEP Cluster

5 Piz Daint Switzerland 387,872 21,230.0 27,154.3 2,384
Cray XC50, Xeon E5-2690v3

https://www.top500.org/list/2018/11/
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Top 5 Super Computers Worldwide, Nov 2017

Rmax Rpeak Power
Rank System #Cores (TFlop/s) (TFlop/s) (kW)

1 Sunway TaihuLight China 10,649,600 93,014.6 125,435.9 15,371
Sunway MPP

2 Tianhe-2 (MilkyWay-2) China 3,120,000 33,862.7 54,902.4 17,808
TH-IVB-FEP Cluster

3 Piz Daint Switzerland 361,760 19,590.0 25,326.3 2,272
Cray XC50

4 Gyoukou Japan 19,860,000 19,135.8 28,192.0 1,350
ZettaScaler-2.2 HPC system

5 Titan USA 560,640 17,590.0 27,112.5 8,209
Cray XK7

https://www.top500.org/lists/2017/11/
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