
CMSC216: Binary, Integers, Arithmetic

Chris Kauffman

Last Updated:
Tue Oct 1 01:52:41 PM EDT 2024

1

Logistics
Reading
▶ C References (finish up)
▶ Bryant/O’Hallaron Ch 2.1-2.3 on Integer Representation

Assignments
▶ Project 1: Due Mon 23-Sep-2024
▶ Lab03 / HW03: Due Wed 18-Sep-2024
▶ Lab04 / HW04: No New material, practice exercises for

Project 1 and Exam 1, due Wed 25-Sep-2024
▶ Exam 1: Thu 26-Sep, Review Tue 24-Sep

Goals
▶ Wrap C discussion
▶ Integers/characters in binary
▶ Arithmetic operations, Negative numbers in binary

2

Announcements

None

3

Exam 1 Logistics

Practice + Review
▶ Practice Exam 1A will be posted Mon 23-Sep-2024
▶ Practice Exam 1B and Review in class Tue 24-Sep-2024
▶ Solutions to practice exam will be posted for students

Exam 1
▶ In-person in class on Thu 26-Sep
▶ Exam runs lecture period: 75min
▶ Expect 2 pages front/back
▶ Open Resource Exam: examine rules for this posted at

bottom of course schedule (beneath slides)

4

Unsigned Integers: Decimal and Binary
▶ Unsigned integers are always positive:

unsigned int i = 12345;
▶ To understand binary, recall how decimal numbers “work”

Decimal: Base 10 Example
Each digit adds on a power 10

80, 345 =5 × 100+ 5 ones
4 × 101+ 40 tens
3 × 102+ 300 hundreds
0 × 103+ 0 thousands
8 × 104 80 tens of thousands

5 + 40+300 + 80, 000

Binary: Base 2 Example
Each digit adds on a power 2

110012 =1 × 20+ 1 ones
0 × 21+ 0 twos
0 × 22+ 0 fours
1 × 23+ 8 eights
1 × 24+ 16 sixteens

=1 + 8 + 16 = 25

So, 110012 = 2510

5

Exercise: Convert Binary to Decimal

Base 2 Example:

11001 =1 × 20+ 1
0 × 21+ 0
0 × 22+ 0
1 × 23+ 8
1 × 24+ 16

=1 + 8 + 16 = 25

So, 110012 = 2510

Try With a Neighbor
Convert the following two
numbers from base 2 (binary) to
base 10 (decimal)
▶ 111
▶ 11010
▶ 01100001

6

Answers: Convert Binary to Decimal

1112 =1 × 22 + 1 × 21 + 1 × 20

=1 × 4 + 1 × 2 + 1 × 1
=710

110102 =1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20

=1 × 16 + 1 × 8 + 0 × 4 + 1 × 2 + 0 × 1
=2610

011000012 =0 × 27 + 1 × 26 + 1 × 25 + 0 × 24

+ 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20

=0 × 128 + ×64 + 1 × 32 + 0 × 16
+ 0 × 8 + 0 × 4 + 0 × 2 + 1 × 1

=9710

Note: last example ignores leading 0’s
7

The Other Direction: Decimal to Binary
Converting a number from base 10 to base 2 is easily done using
repeated division by 2; keep track of remainders
Convert 124 to base 2:

124 ÷ 2 = 62 rem 0
62 ÷ 2 = 31 rem 0
31 ÷ 2 = 15 rem 1
15 ÷ 2 = 7 rem 1
7 ÷ 2 = 3 rem 1
3 ÷ 2 = 1 rem 1
1 ÷ 2 = 0 rem 1

▶ Last step got 0 quotient so we’re done.
▶ Binary digits are in remainders in reverse
▶ Answer: 1111100
▶ Check:

0 + 0 + 22 + 23 + 24 + 25 + 26 = 4 + 8 + 16 + 32 + 64 = 124 8

Decimal, Hexadecimal, Octal, Binary Notation
▶ Numbers exist independent of any writing system
▶ Can write the same number in a variety of bases
▶ C provides syntax for most common bases used in computing

Decimal Binary Hexadecimal Octal
Base 10 2 16 8
Mathematical 125 11111012 7D16 1758
C Prefix None 0b... 0x.. 0...
C Example 125 0b1111101 0x7D 0175

▶ Hexadecimal often used to express long-ish byte sequences
Larger than base 10 so for 10-15 uses letters A-F

▶ Examine number_writing.c and table.c for patterns
▶ Expectation: Gain familiarity with doing conversions between

bases as it will be useful in practice

9

Hexadecimal: Base 16
▶ Hex: compact way to write

bit sequences
▶ One byte is 8 bits
▶ Each Hex character

represents 4 bits
▶ Each Byte is 2 Hex Digits

|-----------+----------------+-----|
| Byte | Hex | Dec |
|-----------+----------------+-----|
0101 0111	57 = 5*16 + 7	87
5 7		
0011 1100	3C = 3*16 + 12	60
3 C=12		
1110 0010	E2 = 14*16 + 2	226
E=14 2		
-----------+----------------+-----		

Hex to 4 bit equivalence

Dec Bits Hex
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

10

Exercise: Conversion Tricks for Hex and Octal
Examples shown in this week’s HW, What tricks are illustrated?
|---------+--------------+-----------------+-----------------------|
| Decimal | Byte = 8bits | Byte by 4 | Hexadecimal |
|---------+--------------+-----------------+-----------------------|
87	01010111	bin: 0101 0111	57 = 5*16 + 7
		hex: 5 7	hex dec
60	00111100	bin: 0011 1100	3C = 3*16 + 12
		hex: 3 C=12	hex dec
226	11100010	bin: 1110 0010	E2 = 14*16 + 2
		hex: E=14 2	hex dec
---------+--------------+-----------------+-----------------------			
Decimal	Byte = 8bits	Byte by 3	Octal
---------+--------------+-----------------+-----------------------			
87	01010111	bin: 01 010 111	127 = 1*8^2 + 2*8 + 7
		oct: 1 2 7	oct dec
60	00111100	bin: 00 111 100	074 = 0*8^2 + 7*8 + 4
		oct: 0 7 4	oct dec
226	11100010	bin: 11 100 010	342 = 3*8^2 + 4*8 + 2
		oct: 3 4 2	oct dec
---------+--------------+-----------------+-----------------------	11		

Answers: Conversion Tricks for Hex and Octal

▶ Converting between Binary and Hexadecimal is easiest when
grouping bits by 4: each 4 bits corresponds to one
hexadecimal digit
bin: 0101 0111 bin: 1110 0010
hex: 5 7 hex: E=14 2

▶ Converting between Binary and Octal is easiest when grouping
bits by 3: each 3 bits corresponds to one octal digit
bin: 01 010 111 bin: 11 100 010
oct: 1 2 7 oct: 3 4 2

12

Character Coding Conventions
▶ Would be hard for people to share words if they interpretted

bits as letters differently
▶ ASCII: American Standard Code for Information Interchange

An old standard for bit/character correspondence
▶ 7 bits per character, includes upper, lower case, punctuation

Dec Hex Binary Char Dec Hex Binary Char
65 41 01000001 A 78 4E 01001110 N
66 42 01000010 B 79 4F 01001111 O
67 43 01000011 C 80 50 01010000 P
68 44 01000100 D 81 51 01010001 Q
69 45 01000101 E 82 52 01010010 R
70 46 01000110 F 83 53 01010011 S
71 47 01000111 G 84 54 01010100 T
72 48 01001000 H 85 55 01010101 U
73 49 01001001 I 86 56 01010110 V
74 4A 01001010 J 87 57 01010111 W
75 4B 01001011 K 88 58 01011000 X
76 4C 01001100 L 89 59 01011001 Y
77 4D 01001101 M 90 5A 01011010 Z
91 5B 01011101 [97 61 01100001 a
92 5C 01011110 \ 98 62 01100010 b

13

Exercise: Characters vs Numbers

Explain the following program and its output

1 // char_ints.c:
2 #include <stdio.h>
3 #include <string.h>
4 int main(){
5 ...
6 char nums[64] = {
7 72, 101, 108, 108, 111, 32,
8 87, 111, 114, 108, 100, 33,
9 0
10 };
11 printf("%s\n",nums);
12 len = strlen(nums);
13 for(int i=0; i<len; i++){
14 printf("[%2d] %c %3d %02X\n",
15 i,nums[i],nums[i],nums[i]);
16 }
17 return 0;
18 }

>> gcc char_ints.c
>> ./a.out
...
Hello World!
[0] H 72 48
[1] e 101 65
[2] l 108 6C
[3] l 108 6C
[4] o 111 6F
[5] 32 20
[6] W 87 57
[7] o 111 6F
[8] r 114 72
[9] l 108 6C
[10] d 100 64
[11] ! 33 21

14

Answers: Characters vs Numbers

The Whole Array
char nums[64] = {
72, 101, 108, 108, 111, 32,
87, 111, 114, 108, 100, 33,
0

};

Lays out a bit pattern at each
spot the array; bit pattern is
specified with decimal numbers

printf("%s\n",nums);

Print the array as though it were
“string”: an array of characters
that is null terminated

Elements of the Array
printf("[%2d] %c %3d %02X\n",

i,nums[i],nums[i],nums[i]);

Print a single element of the
array as
▶ %c : a character (ASCII

table lookup for the glyph to
draw)

▶ %3d : a decimal number
(padding to width 3)

▶ %02X : as a hexadecimal
number (with leading 0’s if
needed and padded with
width 2)

15

Unicode
▶ World: Why can’t I write

컴퓨터
in my code/web address/email?

▶ America: ASCII has 128 chars.
Deal with it.

▶ World: Seriously?
▶ America: We invented

computers. ’Merica!

▶ World:
▶ America: … Unicode?
▶ World: But my language takes

more bytes than American.
▶ America: Deal with it. ’Merica!

▶ ASCII Uses 7 bits per char,
limited to 128 characters

▶ UTF-8 uses 1-4 bytes per
character to represent many
more characters
(1,112,064 codepoints)

▶ Uses 8th bit in a byte to
indicate extension to more than
a single byte

▶ Requires software to understand
coding convention allowing
broader language support

▶ ASCII is a proper subset of
UTF-8 making UTF-8
backwards compatible and
wildly popular

16

Binary Integer Addition/Subtraction

Adding/subtracting in binary works the same as with decimal
EXCEPT that carries occur on values of 2 rather than 10
ADDITION #1 SUBTRACTION #1

1 11 <-carries ? <-carries
0100 1010 = 74 0111 1001 = 121

+ 0101 1001 = 89 - 0001 0011 = 19
------------ ------------

1010 0011 = 163 VVVVVVVVVVVVV
VVVVVVVVVVVVV

ADDITION #2 VVVVVVVVVVVVV
1111 1 <-carries x12 <-carries
0110 1101 = 109 0111 0001 = 119

+ 0111 1001 = 121 - 0001 0011 = 19
------------ ------------

1110 0110 = 230 0110 0110 = 102

17

Two’s Complement Integers: Representing Negative Values

▶ To represent negative integers, must choose a coding system
▶ Two’s complement is the most common for this
▶ Alternatives exist

▶ Signed magnitude: leading bit indicates pos (0) or neg (1)
▶ One’s complement: invert bits to go between positive negative

▶ Great advantage of two’s complement: signed and unsigned
arithmetic are identical

▶ Hardware folks only need to make one set of units for both
unsigned and signed arithmetic

18

Summary of Two’s Complement
Short explanation: most significant bit is associated with a
negative power of two.
UNSIGNED BINARY TWO's COMPLEMENT (signed)
--------------- -------------------------
7654 3210 : position 7654 3210 : position
ABCD EFGH : 8 bits ABCD EFGH : 8-bits
A: 0/1 * +(2^7) *POS* A: 0/1 * -(2^7) *NEG*
B: 0/1 * +(2^6) B: 0/1 * +(2^6)
C: 0/1 * +(2^5) C: 0/1 * +(2^5)
... ...
H: 0/1 * +(2^0) H: 0/1 * +(2^0)

UNSIGNED BINARY TWO's COMPLEMENT (signed)
--------- ---------
7654 3210 : position 7654 3210 : position
1000 0000 = +128 1000 0000 = -128
1000 0001 = +129 1000 0001 = -127 = -128+1
1000 0011 = +131 1000 0011 = -125 = -128+1+2
1111 1111 = +255 1111 1111 = -1 = -128+1+2+4+..+64
0000 0000 = 0 0000 0000 = 0 [+127]
0000 0001 = +1 0000 0001 = +1
0000 0101 = +5 0000 0101 = +5
0111 1111 = +127 0111 1111 = +127

19

Two’s Complement Notes
▶ Leading 1 indicates

negative, 0 indicates positive
▶ All 0’s = Zero
▶ Positive numbers are

identical to unsigned

Conversion Trick
Positive → Negative
▶ Invert bits, Add 1

Negative → Positive
▶ Invert bits, Add 1

Same trick works both ways,
implemented in hardware for the
unary minus operator as in

int y = -x;

~ 0110 1000 +104 : negate

1001 0111 inverted

+ 1

1001 1000 = -104

~ 1001 1000 = -104 : negate

0110 0111 = +103 inverted
+ 1

0110 1000 = +104

Add Pos/Neg should give 0
1 1111 <-carries
0110 1000 = +104

+ 1001 1000 = -104

x 0000 0000 = zero

20

Overflow
▶ Sums that exceed the representation of the bits associated

with the integral type overflow
▶ Excess significant bits are dropped
▶ Addition can result in a sum smaller than the summands, even

for two positive numbers (!?)
▶ Integer arithmetic in fixed bits is a mathematical ring

Examples of Overflow in 8 bits
ADDITION #3 OVERFLOW ADDITION #4 OVERFLOW
1 1111 111 <-carries 1 1 <-carries
1111 1111 = 255 1010 1001 = 169

+ 0000 0001 = 1 + 1100 0001 = 193
------------ ------------
1 0000 0000 = 256 1 0110 1010 = 362
x drop 9th bit x drop 9th bit

------------ ------------
0000 0000 = 0 0110 1010 = 106

21

Underflow

▶ Underflow occurs in
unsigned arithmetic when
values go below 0 (no longer
positive)

▶ Pretend that there is an
extra significant bit to carry
out subtraction

▶ Subtracting a positive
integer from a positive
integer may result in a
larger positive integer (?!?)

▶ Integer arithmetic in fixed
bits is a mathematical ring

Examples of 8-bit Underflow
SUBTRACTIION #2 UNDERFLOW

?<-carries
0000 0000 = 0

- 0000 0001 = 1

VVVVVVVVVVVVV

?<-carries
1 0000 0000 = 256 (pretend)
- 0000 0001 = 1

VVVVVVVVVVVVV
x 2<-carries
0 1111 1110 = 256
- 0000 0001 = 1

1111 1111 = 255

22

Overflow and Underflow In C Programs

▶ See over_under_flow.c for demonstrations in a C program.
▶ No runtime errors for under/overflow
▶ Good for hashing and cryptography
▶ Bad for most other applications: system critical operations

should use checks for over-/under-flow
▶ See textbook Ariane Rocket Crash which was due to overflow

of an integer converted from a floating point value
▶ At the assembly level, there are condition codes indicating

that overflow has occurred but there is not a universal method
to check for this in C1

1Many compilers like GCC can generate assembly instructions that will
detect overflow and abort programs. See the demo program
overflow_detect.c and GCCs -ftrapv option.

23

https://en.wikipedia.org/wiki/Ariane_5#Notable_launches

Interlude: Brief Introduction to GDB, The GNU Debugger

▶ P2 will include a “debugging problem” called puzzlebox
▶ Easiest to solve this problem using GDB (or some other

debugger)
▶ You may benefit from using GDB to complete P1 as well
▶ Debuggers allow one to stop time in a program, inspect

variables, pause execution at certain points and skip forwards
▶ If you’ve added tons of printf()’s to your code and still can’t

figure out what’s going on, a Debugger is your next option
▶ Basic mechanics demonstrated by solving first phase of the

upcoming puzzlebox
▶ Associated Reading: 2021 Quick Guide to GDB

24

https://www-users.cs.umn.edu/~kauffman/tutorials/gdb

Endinaness: Byte ordering in Memory
▶ Single bytes like ASCII characters lay out sequentially in

memory in increasing address
▶ Multi-byte entities like 4-byte ints require decisions on byte

ordering
▶ We think of a 32-bit int like this

Most Signifcant <------> Least Significant
Binary: 0000 0000 0000 0000 0001 1000 1110 1001

0 0 0 0 1 8 E 9
Hex : 000018E9
Decimal: 6377

▶ There are 2 Options to for ordering multi-byte data in memory
▶ Little Endian: Least Significant byte at low address
▶ Big Endian: Most Significant Byte at low address

▶ Example: Integer starts at address #1024
Address

LittleEnd: #1027 #1026 #1025 #1024
Binary: 0000 0000 0000 0000 0001 1000 1110 1001

0 0 0 0 1 8 E 9
BigEnd: #1024 #1025 #1026 #1027

Address 25

Little Endian vs. Big Endian

▶ Most modern machines use Little Endian ordering by default
▶ Some processor (ARM) support both Little / Big Endian BUT

and one is chosen at startup and used until turned off
▶ Both Big and Little Endian have (minor) engineering trade-offs
▶ At one time debated hotly among hardware folks: a la

Gulliver’s Travels conflicts
▶ Intel Chips were little endian and have dominated computing

for several decades, set the precedent for modern platforms
▶ Big endian byte order shows up in network programming:

sending bytes over the network is done in big endian ordering
▶ Examine show_endianness.c : uses C code to print bytes in

order, reveals whether a machine is Little or Big Endian

26

https://en.wikipedia.org/wiki/Gulliver%27s_Travels#Cultural_influences

Output of show_endianness.c
1 // show_endianness.c: Shows endiannes layout of a binary number in
2 // memory. Intel machines and some ARM machines (Apple M1) are little
3 // endian so bytes will print least signficant earlier.
4 #include <stdio.h>
5
6 int main(){
7 int bin = 0b00000000000000000001100011101001; // 6377
8 // | | | | | | | |
9 // 0 0 0 0 1 8 e 9
10 printf("%d\n%08x\n",bin,bin); // show decimal and hex representation of bin
11 char *ptr = (char *) &bin; // pointer to beginning of bin
12 for(int i=0; i<4; i++){ // print bytes of bin from low to high
13 printf("%hhx ", ptr[i]); // memory address
14 } // '%hhx' : 1-byte char in hex
15 printf("\n"); // '%hx' : 2-byte short in hex
16 return 0; // '%x' : 4-byte int in hex
17 }

>> gcc show_endianness.c
>> ./a.out
6377
000018e9
e9 18 0 0

Notice: num prints with value 18e9 but bytes appear in reverse
order e9 18 when run on a Little Endian machine: the “littlest”
byte appears earliest in memory

27

Integer Ops and Speed
▶ Along with Addition and

Subtraction, Multiplication
and Division can also be
done in binary

▶ Algorithms are the same as
base 10 but more painful to
do by hand

▶ This pain is reflected in
hardware speed of these
operations

▶ The Arithmetic and Logic
Unit (ALU) does integer
ops in the machine

▶ A clock ticks in the machine
at some rate like 3Ghz (3
billion times per second)

▶ Under ideal circumstances,
typical ALU Op speeds are

Operation Cycles
Addition 1
Logical 1
Shifts 1
Subtraction 1
Multiplication 3
Division >30

▶ Due to disparity, it is worth
knowing about relation
between multiply/divide and
bitwise operations

▶ Compiler often uses such
tricks: shift rather than
multiply/divide

28

Mangling Bits Puts Muscle on Your Bones
Below illustrates difference between logical and bitwise operations.
int xl = 12 || 10; // truthy (Logical OR)
int xb = 12 | 10; // 14 (Bitwise OR)
int yl = 12 && 10; // truthy (Logical AND)
int yb = 12 & 10; // 8 (Bitwise AND)
int zb = 12 ^ 10; // 6 (Bitwise XOR)
int wl = !12; // falsey (Logical NOT)
int wb = ~12; // 3 (Bitwise NOT/INVERT)

▶ Bitwise ops evaluate on a per-bit level
▶ 32 bits for int, 4 bits shown

Bitwise OR Bitwise AND Bitwise XOR Bitwise NOT
1100 = 12 1100 = 12 1100 = 12

| 1010 = 10 & 1010 = 10 ^ 1010 = 10 ~ 1100 = 12
----------- ----------- ----------- -----------

1110 = 14 1000 = 8 0110 = 6 0011 = 3

29

Bitwise Shifts
▶ Shift operations move bits within a field of bits
▶ Shift operations are

x = y << k; // left shift y by k bits, store in x
x = y >> k; // right shift y by k bits, store in x

▶ All integral types can use shifts: long, int, short, char
▶ Not applicable to pointers or floating point
▶ Examples in 8 bits

// 76543210
char x = 0b00010111; // 23
char y = x << 2; // left shift by 2
// y = 0b01011100; // 92
// x = 0b00010111; // not changed
char z = x >> 3; // right shift by 3
// z = 0b00000010; // 2
// x = 0b00010111; // not changed
char n = 0b10000000; // -128, signed
char s = n >> 4; // right shift by 4
// s = 0b11111000; // -8, sign extension
// right shift >> is "arithmetic"

30

Shifty Arithmetic Tricks
▶ Shifts with add/subtract can be used instead of multiplication

and division
▶ Turn on optimization: gcc -O3 code.c
▶ Compiler automatically does this if it thinks it will save cycles
▶ Sometimes programmers should do this but better to convince

compiler to do it for you, comment if doing manually

Multiplication
// 76543210
char x = 0b00001010; // 10
char x2 = x << 1; // 10*2
// x2 = 0b00010100; // 20
char x4 = x << 2; // 10*4
// x4 = 0b00101000; // 40
char x7 = (x << 3)-x; // 10*7
// x7 = (x * 8)-x; // 10*7
// x7 = 0b01000110; // 70
// 76543210

Division
// 76543210
char y = 0b01101110; // 110
char y2 = y >> 1; // 110/2
// y2 = 0b00110111; // 55
char y4 = y >> 2; // 110/4
// y4 = 0b00011011; // 27
char z = 0b10101100; // -84
char z2 = z >> 2; // -84/4
// z2 = 0b11101011; // -21
// right shift sign extension

31

Exercise: Checking / Setting Bits

Use a combination of bit shift / bitwise logic operations to…
1. Check if bit i of int x is set (has value 1)
2. Clear bit i (set bit at index i to value 0)

Show C code for this
{

int x = ...;
int i = ...;
if(???) { // ith bit of x is set

printf("set!\n");
}

i = ...;
???;
printf("ith bit of x now cleared to 0\n");

}

32

Answers: Checking / Setting Bits

1. Check if bit i of int x is set (has value 1)
int x = ...;
int mask = 1; // or 0b0001 or 0x01 ...
int shifted = mask << i; // shifted 0b00...010..00
if(x & shifted){ // x & 0b10...010..01
... // ------------------

} // 0b00...010..00

2. Clear bit i (set bit at index i to value 0)
int x = ...;
int mask = 1; // or 0b0001 or 0x01 ...
int shifted = mask << i; // shifted 0b00...010..00
int inverted = ~shifted; // inverted 0b11...101..11
x = x & inverted; // x & 0b10...010..01
... // ------------------

// 0b10...000..01

33

Showing Bits

▶ printf() capabilities:
%d as Decimal
%x as Hexadecimal
%o as Octal
%c as Character

▶ No specifier for binary
▶ Can construct such with

bitwise operations
▶ Code pack contains two

codes to do this
▶ printbits.c: single args

printed as 32 bits
▶ showbits.c: multiple

args printed in binary,
hex, decimal

▶ Showing bits usually involves
shifting and bitwise AND &

▶ Example from showbits.c
#define INT_BITS 32

// print bits for x to screen
void showbits(int x){

for(int i=INT_BITS-1; i>=0; i--){
int mask = 1 << i;
if(mask & x){
printf("1");

} else {
printf("0");

}
}

}

34

Bit Masking

▶ Semi-common for functions to accept bit patterns which
indicate true/false options

▶ Frequently makes use of bit masks which are constants
associated with specific bits

▶ Example from earlier: Unix permissions might be…
#define S_IRUSR 0b100000000 // User Read
#define S_IWUSR 0b010000000 // User Write
#define S_IXUSR 0b001000000 // User Execute
#define S_IRGRP 0b000100000 // Group Read
...
#define S_IWOTH 0b000000010 // Others Write
#define S_IXOTH 0b000000001 // Others Execute

▶ Use them to create options to C functions like
int permissions = S_IRUSR|S_IWUSR|S_RGRP;
chmod("/home/kauffman/solution.zip",permissions);

35

Unix Permissions with Octal
▶ Octal arises associated with Unix file permissions
▶ Every file has 3 permissions for 3 entities
▶ Permissions are true/false so a single bit will suffice

▶ ls -l: long list files, shows
permissions

▶ chmod 665 somefile.txt:
change permissions of
somefile.txt to those
shown to the right

▶ chmod 777 x.txt: read /
write / exec for everyone

▶ chmod also honors letter
versions like r and w

▶ chmod u+x script.sh #
make file executable

binary octal
110110101 = 665
rw-rw-r-x somefile.txt
U G O
S R T
E O H
R U E

P R

Readable chmod version:
chmod u=rw,g=rw,o=rx somefile.txt

36

