CMSC216: Binary, Integers, Arithmetic

Chris Kauffman

Last Updated: Tue Oct 1 01:52:41 PM EDT 2024

Logistics

Reading

- C References (finish up)
- Bryant/O'Hallaron Ch 2.1-2.3 on Integer Representation

Assignments

- Project 1: Due Mon 23-Sep-2024
- Lab03 / HW03: Due Wed 18-Sep-2024
- Lab04 / HW04: No New material, practice exercises for Project 1 and Exam 1, due Wed 25-Sep-2024
- Exam 1: Thu 26-Sep, Review Tue 24-Sep

Goals

- Wrap C discussion
- Integers/characters in binary
- Arithmetic operations, Negative numbers in binary

Announcements

None

Exam 1 Logistics

Practice + Review

- Practice Exam 1A will be posted Mon 23-Sep-2024
- Practice Exam 1B and Review in class Tue 24-Sep-2024
- Solutions to practice exam will be posted for students

Exam 1

- In-person in class on Thu 26-Sep
- Exam runs lecture period: 75min
- Expect 2 pages front/back
- Open Resource Exam: examine rules for this posted at bottom of course schedule (beneath slides)

Unsigned Integers: Decimal and Binary

 Unsigned integers are always positive: unsigned int i = 12345;
 To understand binary, recall how decimal numbers "work"

Decimal: Base 10 Example Each digit adds on a power 10 Binary: Base 2 Example Each digit adds on a power 2

$80,345 = 5 \times 10^0 +$	5 ones	$11001_2 = 1 \times 2^0 +$	$1 \; ones$
$4 \times 10^{1} +$	$40 \mathrm{tens}$	$0 \times 2^{1} +$	0 twos
$3 \times 10^{2} +$	$300 \; \mathrm{hundreds}$	$0 \times 2^{2} +$	0 fours
$0 \times 10^{3} +$	$0 \ {\sf thousands}$	$1 \times 2^{3} +$	8 eights
8×10^4	80 tens of thousa	nds $1 imes 2^4 +$	16 sixteens
5 + 40 + 300 + 80,000		=1 + 8 + 16	= 25

So, $11001_2 = 25_{10}$

Exercise: Convert Binary to Decimal

Base 2 Example:

$$11001 = 1 \times 2^0 + 1$$

$$0 \times 2^{1} + 0$$

$$0 \times 2^2 + \qquad 0$$

$$1 \times 2^3 + 8$$

$$1 \times 2^4 + 16$$

$$=1+8+16 = 25$$

So, $11001_2 = 25_{10}$

Try With a Neighbor

Convert the following two numbers from base 2 (binary) to base 10 (decimal)

- 111
- ▶ 11010
- 01100001

Answers: Convert Binary to Decimal

$$\begin{aligned} 111_2 =& 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 \\ =& 1 \times 4 + 1 \times 2 + 1 \times 1 \\ =& 7_{10} \\ 11010_2 =& 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 \\ =& 1 \times 16 + 1 \times 8 + 0 \times 4 + 1 \times 2 + 0 \times 1 \\ =& 26_{10} \\ 01100001_2 =& 0 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 \\ &+ 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \\ =& 0 \times 128 + \times 64 + 1 \times 32 + 0 \times 16 \\ &+ 0 \times 8 + 0 \times 4 + 0 \times 2 + 1 \times 1 \\ =& 97_{10} \end{aligned}$$

Note: last example ignores leading 0's

The Other Direction: Decimal to Binary

Converting a number from base 10 to base 2 is easily done using repeated division by 2; keep track of **remainders Convert 124 to base 2**:

$124 \div 2 = 62$	rem 0
$62 \div 2 = 31$	rem 0
$31 \div 2 = 15$	rem 1
$15 \div 2 = 7$	rem 1
$7 \div 2 = 3$	rem 1
$3 \div 2 = 1$	rem 1
$1 \div 2 = 0$	rem 1

- Last step got 0 quotient so we're done.
- Binary digits are in remainders in reverse
- Answer: 1111100

Check:

 $0 + 0 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 = 4 + 8 + 16 + 32 + 64 = 124$

Decimal, Hexadecimal, Octal, Binary Notation

- Numbers exist independent of any writing system
- Can write the same number in a variety of bases
- C provides syntax for most common bases used in computing

	Decimal	Binary	Hexadecimal	Octal
Base	10	2	16	8
Mathematical	125	1111101 ₂	7D ₁₆	175 ₈
C Prefix	None	0b	0x	0
C Example	125	0b1111101	0x7D	0175

- Hexadecimal often used to express long-ish byte sequences Larger than base 10 so for 10-15 uses letters A-F
- Examine number_writing.c and table.c for patterns
- Expectation: Gain familiarity with doing conversions between bases as it will be useful in practice

Hexadecimal: Base 16

Hex: compact way to write
bit sequences

- One byte is 8 bits
- Each Hex character represents 4 bits

.

Each Byte is 2 Hex Digits

 Byte		 Dec
0101 0111	57 = 5*16 + 7	
0011 1100 3 C=12	3C = 3*16 + 12	60
1110 0010 E=14 2	E2 = 14*16 + 2	226
	·	+

Hex to 4 bit equivalence

Dec	Bits	Hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	А
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

Exercise: Conversion Tricks for Hex and Octal

Examples shown in this week's HW, What tricks are illustrated?

1	+	L	
Decimal	Byte = 8bits	Byte by 4	Hexadecimal
87 	01010111 		57 = 5*16 + 7 hex dec
60 	00111100 	bin: 0011 1100 hex: 3 C=12	3C = 3*16 + 12 hex dec
226 	11100010 		E2 = 14*16 + 2 hex dec
1	T		
Decimal	Byte = 8bits	Byte by 3	Octal
Decimal 87 	+	Byte by 3 bin: 01 010 111 oct: 1 2 7	Octal
	+	+	127 = 1*8^2 + 2*8 + 7 oct dec
 87 	01010111 	bin: 01 010 111 oct: 1 2 7 bin: 00 111 100	127 = 1*8 ² + 2*8 + 7 oct dec 074 = 0*8 ² + 7*8 + 4

Answers: Conversion Tricks for Hex and Octal

 Converting between Binary and Hexadecimal is easiest when grouping bits by 4: each 4 bits corresponds to one hexadecimal digit

bin:	0101	0111	bin:	1110	0010
hex:	5	7	hex:	E=14	2

Converting between Binary and Octal is easiest when grouping bits by 3: each 3 bits corresponds to one octal digit

bin: 01 010 111 bin: 11 100 010 oct: 1 2 7 oct: 3 4 2

Character Coding Conventions

- Would be hard for people to share words if they interpretted bits as letters differently
- ASCII: American Standard Code for Information Interchange An old standard for bit/character correspondence
- ▶ 7 bits per character, includes upper, lower case, punctuation

Dec	Hex	Binary	Char	Dec	Hex	Binary	Char
65	41	01000001	А	78	4E	01001110	Ν
66	42	01000010	В	79	4F	01001111	0
67	43	01000011	С	80	50	01010000	Р
68	44	01000100	D	81	51	01010001	Q
69	45	01000101	Е	82	52	01010010	R
70	46	01000110	F	83	53	01010011	S
71	47	01000111	G	84	54	01010100	Т
72	48	01001000	Н	85	55	01010101	U
73	49	01001001	I	86	56	01010110	V
74	4A	01001010	J	87	57	01010111	W
75	4B	01001011	K	88	58	01011000	Х
76	4C	01001100	L	89	59	01011001	Υ
77	4D	01001101	М	90	5A	01011010	Z
91	5B	01011101	[97	61	01100001	а
92	5C	01011110	\	98	62	01100010	b

Exercise: Characters vs Numbers

Explain the following program and its output

```
1 // char ints.c:
2 #include <stdio.h>
3 #include <string.h>
4 int main(){
 5
     . . .
     char nums[64] = \{
6
7
     72, 101, 108, 108, 111, 32,
8
       87, 111, 114, 108, 100, 33,
9
       0
10
     };
   printf("%s\n",nums);
11
     len = strlen(nums);
12
13
     for(int i=0; i<len; i++){</pre>
       printf("[%2d] %c %3d %02X\n",
14
              i.nums[i],nums[i],nums[i]);
15
     }
16
17
     return 0;
18 }
```

```
>> gcc char_ints.c
>> ./a.out
. . .
Hello World!
[0] H 72 48
[1] e 101 65
[2] 1 108 6C
 3] 1 108 6C
 47 o 111 6F
[5] 32 20
[6] W 87 57
 7] o 111 6F
[8] r 114 72
 9] 1 108 6C
[10] d 100 64
[11] ! 33 21
```

Answers: Characters vs Numbers

The Whole Array

```
char nums[64] = {
    72, 101, 108, 108, 111, 32,
    87, 111, 114, 108, 100, 33,
    0
};
```

Lays out a bit pattern at each spot the array; bit pattern is specified with decimal numbers

```
printf("%s\n",nums);
```

Print the array as though it were "string": an array of characters that is null terminated

Print a single element of the array as

- %c : a character (ASCII table lookup for the glyph to draw)
- %3d : a decimal number (padding to width 3)
- %02X : as a hexadecimal number (with leading 0's if needed and padded with width 2)

Unicode

▶ World: Why can't I write 컴퓨터

in my code/web address/email?

- America: ASCII has 128 chars. Deal with it.
- World: Seriously?
- America: We invented computers. 'Merica!

America: … Unicode?

World:

- World: But my language takes more bytes than American.
- America: Deal with it. 'Merica!

- ASCII Uses 7 bits per char, limited to 128 characters
- UTF-8 uses 1-4 bytes per character to represent many more characters (1,112,064 codepoints)
- Uses 8th bit in a byte to indicate extension to more than a single byte
- Requires software to understand coding convention allowing broader language support
- ASCII is a proper subset of UTF-8 making UTF-8 backwards compatible and wildly popular

Binary Integer Addition/Subtraction

Adding/subtracting in binary works the same as with decimal EXCEPT that carries occur on values of 2 rather than 10 ADDTTTON #1 SUBTRACTION #1 1 11 <-carries ? <-carries $0100 \ 1010 = 74$ $0111 \ 1001 = 121$ + 0101 1001 = 89 $-0001\ 0011 = 19$ $1010\ 0011\ =\ 163$ VVVVVVVVVVVVVV VVVVVVVVVVVVV ADDITION #2 VVVVVVVVVVVVV 1111 1 <-carries x12 <-carries $0110 \ 1101 = 109$ $0111 \ 0001 = 119$ $-0001\ 0011 = 19$ + 0111 1001 = 121 $1110 \ 0110 = 230$ $0110 \ 0110 = 102$

Two's Complement Integers: Representing Negative Values

- ► To represent negative integers, must choose a coding system
- **Two's complement** is the most common for this
- Alternatives exist
 - Signed magnitude: leading bit indicates pos (0) or neg (1)
 - One's complement: invert bits to go between positive negative
- Great advantage of two's complement: signed and unsigned arithmetic are identical
- Hardware folks only need to make one set of units for both unsigned and signed arithmetic

Summary of Two's Complement

Short explanation: most significant bit is associated with a negative power of two.

UNSIGNED BINARY	TWO's COMPLEMENT (signed)
7654 3210 : position ABCD EFGH : 8 bits A: 0/1 * +(2^7) *POS* B: 0/1 * +(2^6) C: 0/1 * +(2^5) H: 0/1 * +(2^0)	7654 3210 : position ABCD EFGH : 8-bits A: 0/1 * -(2^7) *NEG* B: 0/1 * +(2^6) C: 0/1 * +(2^5)
UNSIGNED BINARY	TWO's COMPLEMENT (signed)
1000 0011 = +131 1111 1111 = +255	$1000 \ 0000 = -128$ $1000 \ 0001 = -127 = -128+1$ $1000 \ 0011 = -125 = -128+1+2$ $1111 \ 1111 = -1 = -128+1+2+4++64$ $0000 \ 0000 = 0 \qquad [+127]$ $0000 \ 0001 = +1$ $0000 \ 0101 = +5$

Two's Complement Notes

- Leading 1 indicates negative, 0 indicates positive
- All 0's = Zero
- Positive numbers are identical to unsigned

Conversion Trick

Positive \rightarrow Negative

Invert bits, Add 1

Negative \rightarrow Positive

Invert bits, Add 1

Same trick works both ways, implemented in hardware for the **unary minus** operator as in

int y = -x;

~ 0110 1000 +104 : negate 1001 0111 inverted + 1 $1001 \ 1000 = -104$ $\sim 1001 \ 1000 = -104$: negate $0110 \ 0111 = +103 \ inverted$ 1 $0110 \ 1000 = +104$ Add Pos/Neg should give 0 1 1111 <-carries $0110 \ 1000 = +104$ + 1001 1000 = -104x 0000 0000 = zero

Overflow

- Sums that exceed the representation of the bits associated with the integral type **overflow**
- Excess significant bits are dropped
- Addition can result in a sum smaller than the summands, even for two positive numbers (!?)
- Integer arithmetic in fixed bits is a mathematical ring

Examples of Overflow in 8 bits

ADDITION #3 OVERFLOW	ADDITION #4 OVERFLOW
1 1111 111 <-carries	1 1 <-carries
1111 1111 = 255	$1010 \ 1001 = 169$
+ 0000 0001 = 1	+ 1100 0001 = 193
1 0000 0000 = 256	1 0110 1010 = 362
x drop 9th bit	x drop 9th bit
$0000\ 0000 = 0$	0110 1010 = 106

Underflow

- Underflow occurs in unsigned arithmetic when values go below 0 (no longer positive)
- Pretend that there is an extra significant bit to carry out subtraction
- Subtracting a positive integer from a positive integer may result in a larger positive integer (?!?)
- Integer arithmetic in fixed bits is a mathematical ring

Examples of 8-bit Underflow SUBTRACTITON #2 UNDERFLOW ?<-carries 0000 0000 =0 -00000001 =1 VVVVVVVVVVVVVV ?<-carries $1\ 0000\ 0000 = 256$ (pretend) -000000001 =1 VVVVVVVVVVVVVV 2<-carries х $1111 \ 1110 = 256$ -000000001 =1 $1111 \ 1111 = 255$

Overflow and Underflow In C Programs

- See over_under_flow.c for demonstrations in a C program.
- ► No runtime errors for under/overflow
- Good for hashing and cryptography
- Bad for most other applications: system critical operations should use checks for over-/under-flow
- See textbook Ariane Rocket Crash which was due to overflow of an integer converted from a floating point value
- At the assembly level, there are condition codes indicating that overflow has occurred but there is not a universal method to check for this in C¹

¹Many compilers like GCC can generate assembly instructions that will detect overflow and abort programs. See the demo program overflow_detect.c and GCCs -ftrapv option.

Interlude: Brief Introduction to GDB, The GNU Debugger

- P2 will include a "debugging problem" called puzzlebox
- Easiest to solve this problem using GDB (or some other debugger)
- You may benefit from using GDB to complete P1 as well
- Debuggers allow one to stop time in a program, inspect variables, pause execution at certain points and skip forwards
- If you've added tons of printf()'s to your code and still can't figure out what's going on, a Debugger is your next option
- Basic mechanics demonstrated by solving first phase of the upcoming puzzlebox
- Associated Reading: 2021 Quick Guide to GDB

Endinaness: Byte ordering in Memory

- Single bytes like ASCII characters lay out sequentially in memory in increasing address
- Multi-byte entities like 4-byte ints require decisions on byte ordering
- We think of a 32-bit int like this
 - Most Signifcant
 <---->
 Least Significant

 Binary:
 0000
 0000
 0000
 0001
 1000
 1110
 1001

 0
 0
 0
 0
 1
 8
 E
 9
 - Hex : 000018E9
 - Decimal: 6377

There are 2 Options to for ordering multi-byte data in memory

- Little Endian: Least Significant byte at low address
- **Big Endian**: Most Significant Byte at low address
- Example: Integer starts at address #1024

Address

LittleEnd:	#1027		#1026		#1025		#1024	
Binary:	0000	0000	0000	0000	0001	1000	1110	1001
	0	0	0	0	1	8	Е	9
BigEnd:	#1024	1	#102	5	#1020	6	#102	7
	Address							

Little Endian vs. Big Endian

- Most modern machines use Little Endian ordering by default
- Some processor (ARM) support both Little / Big Endian BUT and one is chosen at startup and used until turned off
- Both Big and Little Endian have (minor) engineering trade-offs
- At one time debated hotly among hardware folks: a la Gulliver's Travels conflicts
- Intel Chips were little endian and have dominated computing for several decades, set the precedent for modern platforms
- Big endian byte order shows up in network programming: sending bytes over the network is done in big endian ordering
- Examine show_endianness.c : uses C code to print bytes in order, reveals whether a machine is Little or Big Endian

Output of show_endianness.c

```
1 // show_endianness.c: Shows endiannes layout of a binary number in
 2 // memory. Intel machines and some ARM machines (Apple M1) are little
 3 // endian so bytes will print least signficant earlier.
   #include <stdio.h>
 5
  int main(){
 6
     int bin = 0b00000000000000000001100011101001;
                                                     // 6377
 7
8
     11
 9
     11
                 0
                     0
                         0
                           0
                               1
                                     8
                                         e
                                            9
   printf("%d\n%08x\n",bin,bin);
                                                  // show decimal and hex representation of b
10
   char *ptr = (char *) &bin;
                                                  // pointer to beginning of bin
11
    for(int i=0: i<4: i++){</pre>
                                                  // print bytes of bin from low to high
12
       printf("%hhx ", ptr[i]);
13
                                                  // memory address
     3
                                                  // '%hhx' : 1-byte char in hex
14
15
     printf("\n");
                                                  // '%hx' : 2-byte short in hex
                                                  // '%x' : 4-byte int in hex
16
   return 0;
17 }
   >> gcc show endianness.c
   >> ./a.out
   6377
   000018e9
   e9 18 0 0
```

Notice: num prints with value 18e9 but bytes appear in reverse order e9 18 when run on a Little Endian machine: the "littlest" byte appears earliest in memory

Integer Ops and Speed

- Along with Addition and Subtraction, Multiplication and Division can also be done in binary
- Algorithms are the same as base 10 but more painful to do by hand
- This pain is reflected in hardware speed of these operations
- The Arithmetic and Logic Unit (ALU) does integer ops in the machine
- A clock ticks in the machine at some rate like 3Ghz (3 billion times per second)

 Under ideal circumstances, typical ALU Op speeds are

	Operation	Cycles	
	Addition	1	
	Logical	1	
	Shifts	1	
	Subtraction	1	
	Multiplication	3	
_	Division	>30	

- Due to disparity, it is worth knowing about relation between multiply/divide and bitwise operations
- Compiler often uses such tricks: shift rather than multiply/divide

Mangling Bits Puts Muscle on Your Bones

Below illustrates difference between logical and bitwise operations.

int xl = 12 || 10; // truthy (Logical OR)
int xb = 12 | 10; // 14 (Bitwise OR)
int yl = 12 && 10; // truthy (Logical AND)
int yb = 12 & 10; // 8 (Bitwise AND)
int zb = 12 ^ 10; // 6 (Bitwise XOR)
int wl = !12; // falsey (Logical NOT)
int wb = ~12; // 3 (Bitwise NOT/INVERT)

Bitwise ops evaluate on a per-bit level

32 bits for int, 4 bits shown

Bitwise OR	Bitwise AND	Bitwise XOR	Bitwise NOT
1100 = 12	1100 = 12	1100 = 12	
1010 = 10	& 1010 = 10	^ 1010 = 10	~ 1100 = 12
1110 = 14	1000 = 8	0110 = 6	0011 = 3

Bitwise Shifts

- Shift operations move bits within a field of bits
- Shift operations are

 $x = y \ll k$; // left shift y by k bits, store in x x = y >> k; // right shift y by k bits, store in x

- All integral types can use shifts: long, int, short, char
- Not applicable to pointers or floating point
- Examples in 8 bits

// 76543210
char x = 0b00010111; // 23
char y = x << 2; // left shift by 2
// y = 0b01011100; // 92
// x = 0b00010111; // not changed
char z = x >> 3; // right shift by 3
// z = 0b0000010; // 2
// x = 0b0000010; // 2
// x = 0b10000000; // -128, signed
char n = 0b10000000; // -128, signed
char s = n >> 4; // right shift by 4
// s = 0b1111000; // -8, sign extension
// right shift >> is "arithmetic"

Shifty Arithmetic Tricks

- Shifts with add/subtract can be used instead of multiplication and division
- Turn on optimization: gcc -03 code.c
- Compiler automatically does this if it thinks it will save cycles
- Sometimes programmers should do this but better to convince compiler to do it for you, comment if doing manually

Multiplication

//			76543210	
char	x	=	0b00001010;	// 10
char	x2	=	x << 1;	// 10*2
11	x2	=	Ob00010100;	// 20
char	x4	=	x << 2;	// 10*4
11	x4	=	ОЪОО1О1ООО;	// 40
char	x7	=	(x << 3)-x;	// 10*7
11	x7	=	(x * 8)-x;	// 10*7
11	x7	=	Ob01000110;	// 70
//			76543210	

Division

```
// 76543210
char y = 0b01101110; // 110
char y2 = y >> 1; // 110/2
// y2 = 0b00110111; // 55
char y4 = y >> 2; // 110/4
// y4 = 0b00011011; // 27
char z = 0b10101100; // -84
char z2 = z >> 2; // -84/4
// z2 = 0b11101011; // -21
// right shift sign extension
```

Exercise: Checking / Setting Bits

Use a combination of bit shift / bitwise logic operations to...

- 1. Check if bit i of int x is set (has value 1)
- 2. Clear bit i (set bit at index i to value 0)

```
Show C code for this
{
    int x = ...;
    int i = ...;
    if( ??? ) { // ith bit of x is set
        printf("set!\n");
    }
    i = ...;
    ???;
    printf("ith bit of x now cleared to 0\n");
}
```

Answers: Checking / Setting Bits

```
1. Check if bit i of int x is set (has value 1)
      int x = ...;
      int mask = 1; // or 0b0001 or 0x01 ...
      int shifted = mask << i; // shifted 0b00...010..00</pre>
      if(x & shifted){
                               // x & 0b10...010..01
                                11
        . . .
      }
                                        0600...010..00
2. Clear bit i (set bit at index i to value 0)
      int x = ...;
      int mask = 1; // or 0b0001 or 0x01 ...
      int shifted = mask << i; // shifted 0b00...010..00</pre>
      int inverted = ~shifted; // inverted 0b11...101..11
      x = x \& inverted;
                                  // x & 0b10...010..01
                                   11
        . . .
                                   11
                                              0b10...000..01
```

Showing Bits

- printf() capabilities:
 - %d as Decimal
 - %x as Hexadecimal
 - %o as Octal
 - %c as Character
- No specifier for binary
- Can construct such with bitwise operations
- Code pack contains two codes to do this
 - printbits.c: single args printed as 32 bits
 - showbits.c: multiple args printed in binary, hex, decimal

- Showing bits usually involves shifting and bitwise AND &
- Example from showbits.c #define INT_BITS 32

```
// print bits for x to screen
void showbits(int x){
  for(int i=INT_BITS-1; i>=0; i--){
    int mask = 1 << i;
    if(mask & x){
        printf("1");
    } else {
        printf("0");
    }
  }
}</pre>
```

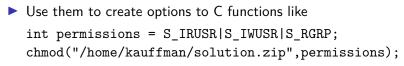
Bit Masking

. . .

- Semi-common for functions to accept bit patterns which indicate true/false options
- Frequently makes use of bit masks which are constants associated with specific bits
- Example from earlier: Unix permissions might be…

```
#define S_IRUSR 0b100000000 // User Read
#define S_IWUSR 0b010000000 // User Write
#define S_IXUSR 0b001000000 // User Execute
#define S_IRGRP 0b000100000 // Group Read
```

#define S_IWOTH Ob000000010 // Others Write
#define S_IXOTH Ob000000001 // Others Execute



Unix Permissions with Octal

- Octal arises associated with Unix file permissions
- Every file has 3 permissions for 3 entities
- Permissions are true/false so a single bit will suffice
- ls -1: long list files, shows permissions
- chmod 665 somefile.txt: change permissions of somefile.txt to those shown to the right
- chmod 777 x.txt: read / write / exec for everyone
- chmod also honors letter versions like r and w
- chmod u+x script.sh # make file executable

```
binary octal
110110101 = 665
rw-rw-r-x somefile.txt
U G O
S R T
E O H
R U E
P R
```

```
Readable chmod version:
chmod u=rw,g=rw,o=rx somefile.txt
```