
CMSC216: C Basics

Chris Kauffman

Last Updated:
Mon Sep 16 03:21:46 PM EDT 2024

1

Logistics
Reading
▶ C references (any / all), whole language:

types, pointers, addresses, arrays, conditionals, loops, structs,
strings, malloc/free, preprocessor, compilation etc.

▶ C References are any of. . .
▶ “The C Programming Language” book by Kernighan / Ritchie
▶ Free refs linked at bottom of ELMS/Canvas frontpage

▶ Next: Bryant and O’Hallaron Ch 2 on Binary Representation of Data

Assignments
▶ Lab02 / HW02 due Wed
▶ Lab03 / HW03 on deck for Wed
▶ Project 1 Up, Due 23-Sep, Video Overview Posted

Goals
Working knowledge of C and correspondence of its semantics 2

Announcements

AVW 4166 Office Hours Room Renovation
▶ Office hours room is in the stages of minor renovation
▶ Will have more floor space and tables for students to use in it
▶ Thanks to the TAs who helped break down some aged

cubicles to make this happen

3

Every Programming Language

Look for the following as it should almost always be there
⊠ Comments
⊟ Statements/Expressions
⊟ Variable Types
⊟ Assignment
⊟ Basic Input/Output (printf() and scanf() from HW1)
□ Function Declarations
□ Conditionals (if-else)
□ Iteration (loops)
□ Aggregate data (arrays, structs, objects, etc)
□ Library System

4

Exercise: Traditional C Data Types
These are the traditional data types in C

Bytes* Name Range
INTEGRAL

1 char -128 to 127
2 short -32,768 to 32,767
4 int -2,147,483,648 to 2,147,483,647
8 long -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

FLOATING
4 float ±3.40282347E±38 (6-7 significant decimal digits)
8 double ±1.79769313486231570E±308 (15 significant decimal digits)

POINTER
4/8 pointer Pointer to another memory location, 32 or 64bit

double *d or int **ip or char *s or void *p (!?)
array Pointer to a fixed location

double [] or int [][] or char []

*Number of bytes for each type is NOT standard but sizes shown are common.
Portable code should NOT assume any particular size which is a huge pain in the @$$.

Inspect types closely and discuss the following:

1. Ranges of integral types? 3. void what now?
2. Missing types you expected? 4. How do you say char?

5

Answers: Traditional C Data Types
Ranges of signed integral types
Asymmetric: slightly more negative than positive

char is -128 to 127

Due to use of Two’s Complement representation, many details and
alternatives later in the course.

Missing: Boolean
Every piece of data in C is either truthy or falsey:
int x; scanf("%d", &x);
if(x){ printf("Truthy"); } // very common
else { printf("Falsey"); }

Typically 0 is the only thing that is falsey

Missing: String
▶ char holds a single character like ’A’ or ’5’

▶ No String type: arrays of char like char str[] or char *s

▶ char pronounced CAR / CARE like “character” (debatable)

6

Recall: Pointers, Addresses, Derferences
type *ptr; Declares a pointer variable
type* ptr; Declares a pointer variable1

*ptr = val; Dereferences pointer to set value pointed at
other = *ptr; Dereferences pointer to get value pointed at

1 int *iptr; // Declare a pointer
2 int x = 7; // Declare/set an int
3 iptr = &x; // Set pointer
4 int y = *iptr; // Deref-ptr, gets x
5 *iptr = 9; // Deref-set ptr, changes x
6
7 double z = 1.23; // Declare/set double
8 double *dptr = &z; // Declare/set double ptr
9 *dptr = 4.56; // Deref-set ptr, changes z

10
11 printf("x: %d z: %f\n", // print via derefs
12 *iptr, *dptr);

Declaring pointer variables to specific types is the normal and safest way
to write C code but can be circumvented

1While int *p; and int* p; do the same thing, placing the * next to the
variable name is the more common style in C for cases like int a, *p, b;

7

Normal Pointers are Typed
Compiler enforces that int* pointers point at integers and nothing
else. Code violating this will generate Compiler-Time Errors in
the general category of a Type Error

1 // pointer_type_error.c: compiler will detect and
2 // error when assigning a pointer to refer to the
3 // wrong type of data. This code has an
4 // intentional error and WILL NOT COMPILE.
5
6 #include <stdio.h>
7 int main(){
8 int a = 10;
9 int *aptr = &a; // int pointer to int

10 double b = 4.56;
11 double *bptr = &b; // double pointer to double
12 aptr = &b; // ERROR: int pointer to double
13 printf("*aptr is %d\n",*aptr);
14 return 0;
15 }
16 // >> gcc pointer_type_error.c
17 // pointer_type_error.c: In function main:
18 // pointer_type_error.c:12:8:: error: assignment to
19 // int * from incompatible pointer type double *
20 // [-Wincompatible-pointer-types]

8

Exercise: Legacy of the Void Pointer

void *ptr; // void pointer

▶ Declares a pointer to
something/anything

▶ Useful to store an arbitrary
memory address

▶ Removes compiler’s ability
to Type Check so
introduces risks managed by
the programmer

Example: void_pointer.c
▶ Predict output
▶ What looks screwy?

1 // void_pointer.c: pluses and perils
2 #include <stdio.h>
3 int main(){
4 int a = 5;
5 double x = 1.2345;
6 void *ptr;
7
8 ptr = &a;
9 int b = *((int *) ptr);

10 printf("%d\n",b);
11
12 ptr = &x;
13 double y = *((double *) ptr);
14 printf("%f\n",y);
15
16 int c = *((int *) ptr);
17 printf("%d\n",c);
18
19 return 0;
20 }

9

Answers: Legacy of the Void Pointer
> cat -n void_pointer.c

1 // Demonstrate void pointer dereferencing and the associated
2 // shenanigans. Compiler needs to be convinced to dereference in most
3 // cases and circumventing the type system (compiler's ability to
4 // check correctness) is fraught with errors.
5 #include <stdio.h>
6 int main(){
7 int a = 5; // int
8 double x = 1.2345; // double
9 void *ptr; // pointer to anything

10
11 ptr = &a;
12 int b = *((int *) ptr); // typecast to convince compiler to deref
13 printf("%d\n",b);
14
15 ptr = &x;
16 double y = *((double *) ptr); // typecast to convince compiler to deref
17 printf("%f\n",y);
18
19 int c = *((int *) ptr); // kids: this is why types are useful
20 printf("%d\n",c);
21
22 return 0;
23 }

> gcc void_pointer.c
> ./a.out
5
1.234500
309237645 # interpreting half of a double as an integer

10

Byte-level Picture of Memory at main() line 20
|-------+-----+--------+-----------+------+------------|
| BYTE | | VALUE | VALUE | VAL | int VALUE |
| ADDR | SYM | TYPED | BINARY | HEX | in DECIMAL |
|-------+-----+--------+-----------+------+------------|
| #2043 | ptr | v | 0000 0000 | 0x00 | | void *ptr occupies
| #2042 | ptr | v | 0000 0000 | 0x00 | | 8 contiguous bytes
| #2041 | ptr | v | 0000 0000 | 0x00 | | from #2036-#2043
| #2040 | ptr | v | 0000 0000 | 0x00 | 0 | and currently points
| #2039 | ptr | v | 0000 0000 | 0x00 | | at #2028; the bits/bytes
| #2038 | ptr | v | 0000 0000 | 0x00 | | there must be typecast
| #2037 | ptr | v | 0000 0111 | 0x07 | | in order to dereference
| #2036 | ptr | #2028 | 1110 1100 | 0xec | 2028 |
| #2035 | x | v | 0011 1111 | 0x3f | | double x occupies
| #2034 | x | v | 1111 0011 | 0xf3 | | 8 contiguous bytes
| #2033 | x | v | 1100 0000 | 0xc0 | | from #2028-#2035
| #2032 | x | v | 1000 0011 | 0x83 | 1072939139 | but ptr points to
| #2031 | x | v | 0001 0010 | 0x12 | | #2028 and prints bytes
| #2030 | x | v | 0110 1110 | 0x6e | | #2028-2031 as a 4-byte
| #2029 | x | v | 1001 0111 | 0x97 | | integer
| #2028 | x | 1.2345 | 1000 1101 | 0x8d | 309237645 |
| #2027 | a | v | 0000 0000 | 0x00 | | int a occupies
| #2026 | a | v | 0000 0000 | 0x00 | | 4 contiguous bytes
| #2025 | a | v | 0000 0000 | 0x00 | | from #2024-#2027
| #2024 | a | 5 | 0000 0101 | 0x05 | 5 |
|-------+-----+--------+-----------+------+------------|

11

Answers: Legacy of the Void Pointer
▶ The big weird integer 309237645 printed at the end is

because. . .
▶ ptr points at a memory location with a double
▶ The compiler is “tricked” into treating this location as storing

int data via the (int *) typecast
▶ Integer vs Floating bit layout is very different; we’ll study this

difference (briefly) later
▶ Compiler generates low level instructions to move 4 bytes of

the double data to an integer location
▶ Both size and bit layout don’t match

▶ Since this is possible to do on a Von Neumann machine C
makes it possible

▶ This does not mean it is a good idea: void_pointer.c
illustrates weird code that is atypical and error-prone

▶ Avoid void * pointers when possible, take care when you
must use them (there are many times you must use them in C)

12

But wait, there’re more types. . .
Unsigned Variants
Trade sign for larger positives

Name Range
unsigned char 0 to 255
unsigned short 0 to 65,535
unsigned int 0 to 4,294,967,295
unsigned long 0 to. . . big, okay?

After our C crash course, we
will discuss representation of
integers with bits and
relationship between signed /
unsigned integer types

Fixed Width Variants since C99
Specify size / properties

int8_t signed integer type with width of
int16_t exactly 8, 16, 32 and 64 bits respectively
int32_t
int64_t
int_fast8_t fastest signed integer type with width of
int_fast16_t at least 8, 16, 32 and 64 bits respectively
int_fast32_t
int_fast64_t
int_least8_t smallest signed integer type with width of
int_least16_t at least 8, 16, 32 and 64 bits respectively
int_least32_t
int_least64_t
intmax_t maximum width integer type
intptr_t integer type capable of holding a pointer
uint8_t unsigned integer type with width of
uint16_t exactly 8, 16, 32 and 64 bits respectively
uint32_t
uint64_t
uint_fast8_t fastest unsigned integer type with width of
uint_fast16_t at least 8, 16, 32 and 64 bits respectively
uint_fast32_t
uint_fast64_t
uint_least8_t smallest unsigned integer type with width of
uint_least16_t at least 8, 16, 32 and 64 bits respectively
uint_least32_t
uint_least64_t
uintmax_t maximum width unsigned integer type
uintptr_t unsigned int capable of holding pointer

13

Arrays in C

▶ Array: a continuous block of
homogeneous data

▶ Automatically allocated by
the compiler/runtime with a
fixed size 1

▶ Support the familiar []
syntax

▶ Refer to a single element via
arr[3]

▶ Bare name arr is the
memory address where
array starts

{
int x = 42;
int *p = &x;
int a[3] = {10,20,30};
int *ap = a;

}
| Addr | Type | Sym | Val |
|-------+------+------+-------|
#4948	int*	ap	#4936
#4944	int	a[2]	30
#4940	int	a[1]	20
#4936	int	a[0]	10
#4928	int*	p	#4924
#4924	int	x	42

1 Modern C supports variable sized arrays in the stack but we will not use them.

14

Arrays and Pointers are Related with Subtle differences

Property Pointer Array
Declare like. . . int *p; // rand val int a[5]; // rand vals

int *p = &x; int a[] = {1, 2, 3};
int *p = q; int a[2] = {2, 4};

Refers to a. . . Memory location Memory location
Which could be.. Anywhere Fixed location
Location ref is Changeable Not changeable
Location. . . Assigned by coder Determined by compiler
Has at it.. One or more thing One or more thing
Brace index? Yep: int z = p[0]; Yep: int z = a[0];
Dereference? Yep: int y = *p; Nope
Arithmetic? Yep: p++; Nope
Assign to array? Yep: int *p = a; Nope
Interchangeable doit_a(int a[]); doit_p(int *p);

int *p = ... int a[] = {1,2,3};
doit_a(p); doit_p(a);

Tracks num elems NOPE NOPE
Nada, nothin, nope No a.length or length(a)

15

Example: pointer_v_array.c
1 // pointer_v_array.c: Demonstrate equivalence of pointers and
2 // arrays. An array is represented by its starting address so can be
3 // passed to a function taking a pointer as such. Similarly, a pointer
4 // value is an address so can be passed to a function taking an array
5 // argument. printf("%p") prints pointer values in hexadecimal format.
6
7 #include <stdio.h>
8
9 void print0_arr(int a[]){ // print 0th element of a

10 printf("%p: %d\n", a, a[0]); // address and 0th elem
11 }
12 void print0_ptr(int *p){ // print int pointed at by p
13 printf("%p: %d\n", p, *p); // address and 0th elem
14 }
15 int main(){
16 int *p = NULL; // declare a pointer, points nowhere
17 printf("%p: %p\n", &p, p); // print address/contents of p
18 int x = 21; // declare an integer
19 p = &x; // point p at x
20 print0_arr(p); // pointer as array
21 int a[] = {5,10,15}; // declare array, auto size
22 print0_ptr(a); // array as pointer
23 //a = p; // can't change where array points
24 p = a; // point p at a
25 print0_ptr(p);
26 return 0;
27 } 16

Execution of Code/Memory 1

1 void print0_arr(int a[]){
2 printf("%p: %d\n", a, a[0])
3 }
4 void print0_ptr(int *p){
5 printf("%p: %d\n", p, *p);
6 }
7 int main(){
8 int *p = NULL;
9 printf("%p: %p\n", &p, p);

<1> 10 int x = 21;
<2> 11 p = &x;
<3> 12 print0_arr(p);

13 int a[] = {5,10,15};
14 print0_ptr(a);
15 //a = p;

<4> 16 p = a;
<5> 17 print0_ptr(p);

18 return 0;
19 }

Memory at indicated <POS>
<1>
| Addr | Type | Sym | Val |
|-------+------+------+-----|
#4948	?	?	?
#4944	int	a[2]	?
#4940	int	a[1]	?
#4936	int	a[0]	?
#4928	int*	p	NULL
#4924	int	x	?
<3>			
Addr	Type	Sym	Val
-------+------+------+-------			
#4948	?	?	?
#4944	int	a[2]	?
#4940	int	a[1]	?
#4936	int	a[0]	?
#4928	int*	p	#4924
#4924	int	x	21

17

Execution of Code/Memory 2

1 void print0_arr(int a[]){
2 printf("%p: %d\n", a, a[0])
3 }
4 void print0_ptr(int *p){
5 printf("%p: %d\n", p, *p);
6 }
7 int main(){
8 int *p = NULL;
9 printf("%p: %p\n", &p, p);

<1> 10 int x = 21;
<2> 11 p = &x;
<3> 12 print0_arr(p);

13 int a[] = {5,10,15};
14 print0_ptr(a);
15 //a = p;

<4> 16 p = a;
<5> 17 print0_ptr(p);

18 return 0;
19 }

Memory at indicated <POS>
<4>
| Addr | Type | Sym | Val |
|-------+------+------+-------|
| #4948 | ? | ? | ? |
| #4944 | int | a[2] | 15 |*
| #4940 | int | a[1] | 10 |*
| #4936 | int | a[0] | 5 |*
| #4928 | int* | p | #4924 |
| #4924 | int | x | 21 |
<5>
| Addr | Type | Sym | Val |
|-------+------+------+-------|
#4948	?	?	?
#4944	int	a[2]	15
#4940	int	a[1]	10
#4936	int	a[0]	5
#4928	int*	p	#4936
#4924	int	x	21

18

Summary of Pointer / Array Relationship
Arrays
▶ Arrays are allocated by the Compiler at a fixed location
▶ Bare name a references is the starting address of the array
▶ Must use square braces a[i] to index into them

Pointers
▶ Pointers can point to anything, can change, must be manually

directed
▶ Can use square braces p[i] or deref *p to index into them

Interchangeability
▶ In most cases, functions that require an array can be passed a

pointer, functions that that require a pointer can be passed an
array

▶ Works BECAUSE array variables are pass as their starting
memory address, a pointer value 19

Exercise: Pointer Arithmetic
“Adding” to a pointer increases the position at which it points
▶ Add 1 to an int*: point to the next int, add 4 bytes
▶ Add 1 to a double*: point to next double, add 8 bytes

Examine pointer_arithmetic.c below. Show memory contents
and what’s printed on the screen
1 #include <stdio.h>
2 void print_ptr(int *q){
3 printf("%p: %d\n", q, *q);
4 }
5 int main(){
6 int x = 21;
7 int *p;
8 int a[] = {5,10,15};
9 p = a;

10 print_ptr(p);
<1> 11 p = a+1;

12 print_ptr(p);
<2> 13 p++;

14 print_ptr(p);
<3> 15 p+=2;

16 print_ptr(p);
<4> 17 return 0;

18 }

<1>
| Addr | Type | Sym | Val |
|-------+------+------+-------|
#4948	?	?	?
#4944	int	a[2]	15
#4940	int	a[1]	10
#4936	int	a[0]	5
#4928	int*	p	#4936
#4924	int	x	21

SCREEN:
4936: 5

<2> ???
<3> ???
<4> ???

20

Answers: Pointer Arithmetic
5 int main(){
6 int x = 21;
7 int *p;
8 int a[] = {5,10,15};
9 p = a;

10 print_ptr(p);
<1> 11 p = a+1;

12 print_ptr(p);
<2> 13 p++;

14 print_ptr(p);
<3> 15 p+=2;

16 print_ptr(p);
<4> 17 return 0;

18 }

<2>
| Addr | Type | Sym | Val | SCREEN:
|-------+------+------+-------| 4936: 5
| #4948 | ? | ? | ? | 4940: 10
#4944	int	a[2]	15
#4940	int	a[1]	10
#4936	int	a[0]	5
#4928	int*	p	#4940
#4924	int	x	21

<3>
| Addr | Type | Sym | Val | SCREEN:
|-------+------+------+-------| 4936: 5
| #4948 | ? | ? | ? | 4940: 10
| #4944 | int | a[2] | 15 | 4944: 15
#4940	int	a[1]	10
#4936	int	a[0]	5
#4928	int*	p	#4944
#4924	int	x	21

<4>
| Addr | Type | Sym | Val | SCREEN:
|-------+------+------+-------| 4936: 5
| #4952 | ? | ? | ? | 4940: 10
| #4948 | ? | ? | ? | 4944: 15
| #4944 | int | a[2] | 15 | 4952: ???
#4940	int	a[1]	10
#4936	int	a[0]	5
#4928	int*	p	#4952
#4924	int	x	21

Out of bounds deref of #4952 is
undefined behavior; may print
random garbage values or may
Segfault and killing the program.

21

Pointer Arithmetic Alternatives
Alternatives to pointer arithmetic exist that improve readability
printf("enter 5 doubles\n");
double arr[5];
for(int i=0; i<5; i++){

// POINTER: ick // PREFERRED
scanf("%lf", arr+i); OR scanf("%lf", &arr[i]);

}
printf("you entered:\n");
for(int i=0; i<5; i++){

// POINTER: ick // PREFERRED
printf("%f ", *(arr+i)); OR printf("%f ",arr[i]);

}

However, some situations benefit from pointer manipulations, often
in string processing like the following:
// read_name.c : string processing example
char name[128]; // up to 128 chars
printf("first name: ");
scanf(" %s", name); // read into name
int len = strlen(name); // compute length of string
name[len] = ' '; // replace \0 with space
printf("last name: ");
scanf(" %s",name+len+1); // read last name at offset
printf("full name: %s\n",name);

22

read_name.c : String Functions + Pointer Arithmetic
INITIAL MEMORY STEP 1 STEP 2 STEP 3
char name[128] scanf(" %s", name);
// space for a 128 // Enters 'Chris' scanf(" %s", name+len+1);
// chars (a string) len = strlen(name); name[len] = ' '; // Enter 'Kauffman'

...			
#1038	?		#1038	?		#1038	?		#1038	'\0'
#1037	?		#1037	?		#1037	?		#1037	'n'
#1036	?		#1036	?		#1036	?		#1036	'a'
#1035	?		#1035	?		#1035	?		#1035	'm'
#1034	?		#1034	?		#1034	?		#1034	'f'
#1033	?		#1033	?		#1033	?		#1033	'f'
#1032	?		#1032	?		#1032	?		#1032	'u'
#1031	?		#1031	?		#1031	?		#1031	'a'
#1030	?		#1030	?		#1030	?		#1030	'K'
#1029	?		#1029	'\0'		#1029	' '		#1029	' '
#1028	?		#1028	's'		#1028	's'		#1028	's'
#1027	?		#1027	'i'		#1027	'i'		#1027	'i'
#1026	?		#1026	'r'		#1026	'r'		#1026	'r'
#1025	?		#1025	'h'		#1025	'h'		#1025	'h'

name | #1024 | ? | name | #1024 | 'C' | name | #1024 | 'C' | name | #1024 | 'C' |
len | #1020 | ? | len | #1020 | 5 | len | #1020 | 5 | len | #1020 | 5 |

Initial scanf() + Overwrite null char Read in after space
strlen() with a space using scanf()

Note the null character \0 terminates “standard” strings in C, honored by
standard string functions like printf(), strlen(), strcpy(), etc.

23

Allocating Memory with malloc() and free()
Dynamic Memory
▶ Most C data has a fixed

size: single vars or arrays
with sizes specified at
compile time

▶ malloc(nbytes) is used to
manually allocate memory
▶ single arg: number of

bytes of memory
▶ frequently used with

sizeof() operator
▶ returns a void* to bytes

found or NULL if not
enough space could be
allocated

▶ free() is used to release
memory

// malloc_demo.c
#include <stdio.h>
#include <stdlib.h> // malloc / free
int main(){

printf("how many ints: ");
int len;
scanf(" %d",&len);

int *nums = malloc(sizeof(int)*len);

printf("initializing to 0\n");
for(int i=0; i<len; i++){

nums[i] = 0;
}
printf("enter %d ints: ",len);
for(int i=0; i<len; i++){

scanf(" %d",&nums[i]);
}
printf("nums are:\n");
for(int i=0; i<len; i++){

printf("[%d]: %d\n",i,nums[i]);
}
free(nums);
return 0;

}

24

Optional Exercise: Allocation Sizes

How Big
How many bytes allocated?
How many elements in the array?
char *a = malloc(16);
char *b = malloc(16*sizeof(char));
int *c = malloc(16);
int *d = malloc(16*sizeof(int));
double *e = malloc(16);
double *f = malloc(16*sizeof(double));
int **g = malloc(16);
int **h = malloc(16*sizeof(int*));

Allocate / Deallocate
▶ Want an array of ints

called ages, quantity 32
▶ Want an array of

doubles called dps,
quantity is in variable
int size

▶ Deallocate ages / dps

How many bytes CAN be allocated?
▶ Examine malloc_all_memory.c

25

Answers: Allocation Sizes

char *a = malloc(16); // 16
char *b = malloc(16*sizeof(char)); // 16
int *c = malloc(16); // 16
int *d = malloc(16*sizeof(int)); // 64
double *e = malloc(16); // 16
double *f = malloc(16*sizeof(double)); // 128
int **g = malloc(16); // 16
int **h = malloc(16*sizeof(int*)); // 128

int *ages = malloc(sizeof(int)*32);
int size = ...;
double *dps = malloc(sizeof(double)*size);

free(ages);
free(dps);

26

Compile and Runtime vs Memory Management
Compile Time Sizes
▶ Some sizes are known at Compile Time
▶ Compiler can calculate, sizes of fixed variables, arrays, sizes of

stack frames for function calls and automatically allocate
them

▶ Most of these are automatically managed on the function
call stack and don’t require use of malloc() / free()

Run Time Sizes
▶ Compiler can’t predict the future, at Run Time programs

must react to
▶ Typed user input like names, Size of a file that is to be read
▶ Elements to be added to a data structure
▶ Memory allocated in one function and returned to another

▶ As these things are determined, malloc() is used to allocate
memory in the heap, when it is finished free() it

27

Common Misconception: sizeof(thing)

▶ sizeof(thing) determines the Compile Time Size of
thing

▶ Useful when malloc()’ing stuff as in
int *arr = malloc(count * sizeof(int));

▶ NOT USEFUL for size of arrays/strings
int *arr = ...;
int nelems = sizeof(arr); // always 8 on 64-bit systems
// REASON: arr is an (int *) and pointers are 8 bytes big

▶ To determine the size of arrays, must be given size OR have
an ending sentinel value

▶ Strings commonly use strlen() to determine length:
char *str = "Hello world!\n";
int len = strlen(str); // 13

See sizeof_arrays.c for some modest examples

28

The 4 Logical Regions of Program Memory
▶ Running program typically has 4

regions of memory
1. Stack: automatic, push/pop

with function calls
2. Heap: malloc() / free()
3. Global: variables outside

functions, static vars
4. Text: Program instructions

in Binary
▶ Stack grows toward Heap, a

collision results in stack
overflow

▶ Global and Text regions usually
fixed in size

▶ “Logical Regions” for Humans
to organize their programs; no
physical differences for regions

29

Memory Tools on Linux

Valgrind2: Suite of tools including Memcheck
▶ Catches most memory errors3

▶ Use of uninitialized memory
▶ Reading/writing memory after it has been free’d
▶ Reading/writing off the end of malloc’d blocks
▶ Memory leaks

▶ Source line of problem happened (but not cause)
▶ Super easy to use
▶ Slows execution of program way down

2http://valgrind.org/
3http://en.wikipedia.org/wiki/Valgrind

30

http://valgrind.org/
http://en.wikipedia.org/wiki/Valgrind

Valgrind in Action

See some common problems in badmemory.c
Compile with debugging enabled: -g
> gcc -g badmemory.c

run program through valgrind
> valgrind ./a.out
==12676== Memcheck, a memory error detector
==12676== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==12676== Using Valgrind-3.10.1 and LibVEX; rerun with -h for copyright info
==12676== Command: a.out
==12676==
Uninitialized memory
==12676== Conditional jump or move depends on uninitialised value(s)
==12676== at 0x4005C1: main (badmemory.c:7)
==12676==
==12676== Conditional jump or move depends on uninitialised value(s)
==12676== at 0x4E7D3DC: vfprintf (in /usr/lib/libc-2.21.so)
==12676== by 0x4E84E38: printf (in /usr/lib/libc-2.21.so)
==12676== by 0x4005D6: main (badmemory.c:8)
...

Link: Description of common Valgrind Error Messages

31

http://valgrind.org/docs/manual/mc-manual.html#mc-manual.errormsgs

Exercise: free()’ing in the Wrong Spot

Common use for malloc() is for one function to allocate memory
and return its location to another function (such as in P1).
Question becomes when to free() such memory.

Program to the right is buggy,
produces following output on one
system
> gcc free_twice.c
> ./a.out
ones[0] is 0
ones[1] is 0
ones[2] is 1
ones[3] is 1
ones[4] is 1

▶ Why does this bug happen?
▶ How can it be fixed?
▶ Answers in free_twice.c

1 int *ones_array(int len){
2 int *arr = malloc(sizeof(int)*len);
3 for(int i=0; i<len; i++){
4 arr[i] = 1;
5 }
6 free(arr);
7 return arr;
8 }
9

10 int main(){
11 int *ones = ones_array(5);
12 for(int i=0; i<5; i++){
13 printf("ones[%d] is %d\n",i,ones[i]);
14 }
15
16 free(ones);
17 return 0;

32

Answers: free()’ing in the Wrong Spot
▶ Once a malloc()’d area is free()’d, it is no longer valid
▶ Don’t free() data that is the return value of a function
▶ Never free() twice

> gcc -g free_twice.c
> a.out
ones[0] is 0
ones[1] is 0
ones[2] is -1890717680
ones[3] is 22008
ones[4] is 1
free(): double free detected in tcache 2
Aborted (core dumped)

> valgrind a.out
==10125== Memcheck, a memory error detector
...
==10125== Invalid free()
==10125== at 0x48399AB: free
==10125== by 0x10921A: main (free_twice.c:24)

9 int *ones_array(int len){
10 int *arr = malloc(sizeof(int)*len);
11 for(int i=0; i<len; i++){
12 arr[i] = 1;
13 }
14 //free(arr); // should not free an array
15 return arr; // being returned
16 }
17
18 int main(){
19 int *ones = ones_array(5);
20 for(int i=0; i<5; i++){
21 printf("ones[%d] is %d\n",i,ones[i]);
22 }
23
24 free(ones); // later free makes
25 return 0; // more sense
26 }

Note that the Valgrind output gives an exact line number where
the problem occurs but this is not the line to change to fix the
problem.

33

Answers: free()’ing in the Wrong Spot

34

structs: Heterogeneous Groupings of Data
▶ Arrays are homogenous: all

elements the same type
▶ structs are C’s way of defining

heterogenous data
▶ Each field can be a different kind
▶ One instance of a struct has all

fields
▶ Access elements with ’dot’ notation
▶ Several syntaxes to declare, we’ll

favor modern approach
▶ Convention: types have _t at the

end of their name to help identify
them (not a rule but a good idea)

typedef struct{ // declare type
int an_int;
double a_doub;
char the_car;
int my_arr[6];

} thing_t;

thing_t a_thing; // variable
a_thing.an_int = 5;
a_thing.a_doub = 9.2;
a_thing.the_char = 'c';
a_thing.my_arr[2] = 7;
int i = a_thing.an_int;

thing_t b_thing = { // variable
.an_int = 15, // initialize
.a_doub = 19.2, // all fields
.the_char = 'D',
.my_arr = {17, 27, 37,

47, 57, 67}
};

35

struct Ins/Outs

Recursive Types
▶ structs can have pointers

to their same kind
▶ Syntax is a little wonky

vvvvvvvvvvv
typedef struct node_struct {

char data[128];
struct node_struct *next;

^^^^^^^^^^^
} node_t;

Arrow Operator
▶ Pointer to struct, want to

work with a field
▶ Use ’arrow’ operator -> for

this (dash/greater than)

Dynamically Allocated Structs
▶ Dynamic Allocation of

structs requires size
calculation

▶ Use sizeof() operator
node_t *one_node =

malloc(sizeof(node_t));
int length = 5;
node_t *node_arr =

malloc(sizeof(node_t) * length);
node_t *node = ...;
if(node->next == NULL){ ... }

list_t *list = ...;
list->size = 5;
list->size++;

36

Exercise: Structs in Memory

▶ Structs allocated in memory
are laid out compactly

▶ Compiler may pad fields to
place them at nice
alignments (even addresses
or word boundaries)

typedef struct {
double x;
int y;
char nm[4];

} small_t;

int main(){
small_t a =

{.x=1.23, .y=4, .nm="hi"};
small_t b =

{.x=5.67, .y=8, .nm="bye"};
}

Memory layout of main()
| Addr | Type | Sym | Val |
|-------+--------+---------+------|
#1031	char	b.nm[3]	\0
#1030	char	b.nm[2]	e
#1029	char	b.nm[1]	y
#1028	char	b.nm[0]	b
#1024	int	b.y	8
#1016	double	b.x	5.67
#1015	char	a.nm[3]	?
#1014	char	a.nm[2]	\0
#1013	char	a.nm[1]	i
#1012	char	a.nm[0]	h
#1008	int	a.y	4
#1000	double	a.x	1.23

Result of?
scanf("%d", &a.y); // input 7
scanf("%lf", &b.x); // input 9.4
scanf("%s", b.nm); // input yo

37

Answers: Structs in Memory

scanf("%d", &a.y); // input 7
scanf("%lf", &b.x); // input 9.4
scanf("%s", b.nm); // input yo
| | | | Val | Val |
| Addr | Type | Sym | Before | After |
|-------+--------+---------+--------+-------|
#1031	char	b.nm[3]	\0	\0
#1030	char	b.nm[2]	e	\0
#1029	char	b.nm[1]	y	o
#1028	char	b.nm[0]	b	y
#1024	int	b.y	8	
#1016	double	b.x	5.67	9.4
#1015	char	a.nm[3]	?	
#1014	char	a.nm[2]	\0	
#1013	char	a.nm[1]	i	
#1012	char	a.nm[0]	h	
#1008	int	a.y	4	7
#1000	double	a.x	1.23	

38

Structs: Dots vs Arrows

Newcomers wonder when to use Dots vs Arrows
▶ Use Dot (s.field) with an Actual struct
▶ Use Arrow (p->field) for a Pointer to a struct

small_t small; // struct: 16 bytes
small_t *sptr; // pointer: 8 bytes

sptr = &small; // point at struct

small.x = 1.23; // actual struct
sptr->x = 4.56; // through pointer
(*sptr).x = 4.56; // ICK: not preferred

small.y = 7; // actual struct
sptr->y = 11; // through pointer

small.nm[0] = 'A'; // through struct
sptr->nm[1] = 'B'; // through pointer
sptr->nm[2] = '\0'; // through pointer

Memory at end of code on left
| Addr | Sym | Value |
|-------+-------------+-------|
#2072
#2064	sptr	#2048
#2063	small.nm[3]	?
#2062	small.nm[2]	\0
#2061	small.nm[1]	B
#2060	small.nm[0]	A
#2056	small.y	11
#2048	small.x	4.56

39

read_structs.c: malloc() and scanf() for structs
1 // Demonstrate use of pointers, malloc() with structs, scanning
2 // structs fields
3
4 #include <stdlib.h>
5 #include <stdio.h>
6
7 typedef struct { // simple struct
8 double x; int y; char nm[4];
9 } small_t;

10
11 int main(){
12 small_t c; // stack variable
13 small_t *cp = &c; // address of stack var
14 scanf("%lf %d %s", &cp->x, &cp->y, cp->nm); // read struct fields
15 printf("%f %d %s\n",cp->x, cp->y, cp->nm); // print struct fields
16
17 small_t *sp = malloc(sizeof(small_t)); // malloc'd struct
18 scanf("%lf %d %s", &sp->x, &sp->y, sp->nm); // read struct fields
19 printf("%f %d %s\n",sp->x, sp->y, sp->nm); // print struct fields
20
21 small_t *sarr = malloc(5*sizeof(small_t)); // malloc'd struct array
22 for(int i=0; i<5; i++){
23 scanf("%lf %d %s", &sarr[i].x, &sarr[i].y, sarr[i].nm); // read
24 printf("%f %d %s\n", sarr[i].x, sarr[i].y, sarr[i].nm); // print
25 }
26
27 free(sp); // free single struct
28 free(sarr); // free struct array
29 return 0;
30 }

40

File Input and Output
▶ Standard C I/O functions for reading/writing file data.
▶ Work with text data: formatted for human reading

FILE *fopen(char *fname, char *mode);
// open file named fname, mode is "r" for reading, "w" for writing
// returns a File Handle (FILE *) on success
// returns NULL if not able to open file; do not fclose(NULL)

int fclose(FILE *fh);
// close file associated with fh, writes pending data to file,
// free()'s memory associated with open file
// Do not fclose(NULL)

int fscanf(FILE *fh, char *format, addr1, addr2, ...);
// read data from an open file handle according to format string
// storing parsed tokens in given addresses returns EOF if end of file
// is reached

int fprintf(FILE *fh, char *format, arg1, arg2, ...);
// prints data to an open file handle according to the format string
// and provided arguments

void rewind(FILE *fh);
// return the given open file handle to the beginning of the file.

Example of use in struct_text_io.c
41

Binary Data I/O Functions
▶ Open/close files same way with fopen()/fclose()
▶ Read/write raw bytes (not formatted) with the following

size_t fread(void *dest, size_t byte_size, size_t count, FILE *fh);
// read binary data from an open file handle. Attempt to read
// byte_size*count bytes into the buffer pointed to by dest.
// Returns number of bytes that were actually read

size_t fwrite(void *src, size_t byte_size, size_t count, FILE *fh);
// write binary data to an open file handle. Attempt to write
// byte_size*count bytes from buffer pointed to by src.
// Returns number of bytes that were actually written

See examples of use in struct_binary_io.c

Tradeoffs between Binary and Textual Files
▶ Binary files usually smaller than text and can be directly read

into memory but NOT easy on the eyes
▶ Text data more readable but more verbose, must be parsed

and converted to binary numbers

42

Strings are Character Arrays
Conventions
▶ Convention in C is to use

character arrays as strings
▶ Terminate character arrays with

the \0 null character to indicate
their end
char str1[6] =
{'C','h','r','i','s','\0'};

▶ Null termination done by
compiler for string constants
char str2[6] = "Chris";
// is null terminated

▶ Null termination done by most
standard library functions like
scanf()

Be aware
▶ fread() does not append

nulls when reading binary
data

▶ Manually manipulating a
character array may
overwrite ending null

String Library
▶ Include with <string.h>
▶ Null termination expected
▶ strlen(s): length of string
▶ strcpy(dest, src): copy

chars from src to dest
▶ Limited number of others

43

Optional Exercise: Common C operators
Arithmetic + - * / %

Comparison == > < <= >= !=
Logical && || !

Memory & and *
Compound += -= *= /= ...

Bitwise Ops ^ | & ~
Conditional ? :

Bitwise Ops
Will discuss soon

int x = y << 3;
int z = w & t;
long r = x | z;

Integer/Floating Division
Predict values for each variable
int q = 9 / 4;
int r = 9 % 4;
double x = 9 / 4;
double y = (double) 9 / 4;
double z = ((double)9) / 4;
double w = 9.0 / 4;
double t = 9 / 4.0;
int a=9, b=4;
double t = a / b;

Conditional (ternary) Operator
double x = 9.95;
int y = (x < 10.0) ? 2 : 4;

44

Answers: Integer vs Floating Division

Integer versus real division: values for each of these are. . .
int q = 9 / 4; // quotient 2
int r = 9 % 4; // remainder 1
double x = 9 / 4; // 2.0 (int quotient first)
double y = (double) 9 / 4; // 2.25
double z = ((double)9) / 4; // 2.25
double w = 9.0 / 4; // 2.25
double t = 9 / 4.0; // 2.25
int a=9, b=4;
double t = a / b; // 2 (int quotient)

45

C Control Structures
Looping/Iteration
// while loop
while(truthy){

stuff;
more stuff;

}

// for loop
for(init; truthy; update){

stuff;
more stuff;

}

// do-while loop
do{

stuff;
more stuff;

} while(truthy);

Conditionals
// simple if
if(truthy){

stuff;
more stuff;

}

// chained exclusive if/elses
if(truthy){

stuff;
more stuff;

}
else if(other){

stuff;
}
else{

stuff;
more stuff;

}

// ternary ? : operator
int x = (truthy) ? yes : no;

46

Jumping Around in Loops
break: often useful
// break statement ends loop
// only valid in a loop
while(truthy){

stuff;
if(istrue){

something;
break;-----+

} |
more stuff; |

} |
after loop; <--+

// break ends inner loop,
// outer loop advances
for(int i=0; i<10; i++){

for(int j=0; j<20; j++){
printf("%d %d ",i,j);
if(j == 7){

break;-----+
} |

} |
printf("\n");<-+

}

continue: occasionally useful
// continue advances loop iteration
// does update in for loops

+------+
V |

for(int i=0; i<10; i++){ |
printf("i is %d\n",i); |
if(i % 3 == 0){ |

continue;-------------+
}
printf("not div 3\n");

}

Prints
i is 0
i is 1
not div 3
i is 2
not div 3
i is 3
i is 4
not div 3
...

47

Really Jumping Around: goto

▶ Machine-level control
involves jumping to
different instructions

▶ C exposes this as
▶ somewhere:

label for code position
▶ goto somewhere;

jump to that location
▶ goto_demo.c

demonstrates a loop with
gotos

▶ Avoid goto unless you
have a compelling motive

▶ Beware spaghetti code. . .
and raptor attacks. . .

1 // goto_demo.c: control flow with goto
2 // Low level assembly jumps are similar
3 #include <stdio.h>
4 int main(){
5 int i=0;
6 beginning: // label for gotos
7 printf("i is %d\n",i);
8 i++;
9 if(i < 10){

10 goto beginning; // go back
11 }
12 goto ending; // go forward
13 printf("print me please!\n");
14 ending: // label for goto
15 printf("i ends at %d\n",i);
16 return 0;
17 }

XKCD #292

48

https://xkcd.com/292/

switch()/case: The worst control structure
▶ switch/case allows jumps based

on an integral value
▶ Frequent source of errors
▶ switch_demo.c shows some

features
▶ use of break
▶ fall through cases
▶ default catch-all
▶ Use in a loop

▶ May enable some small compiler
optimizations

▶ Almost never worth correctness
risks: one good use in my
experience

▶ Favor if/else if/else unless
compelled otherwise

1 // switch_demo.c: peculiarities of switch/case
2 #include <stdio.h>
3 int main(){
4 while(1){
5 printf("enter a char: ");
6 char c;
7 scanf(" %c",&c); // ignore preceding spaces
8 switch(c){ // switch on read char
9 case 'j': // entered j

10 printf("Down line\n");
11 break; // go to end of switch
12 case 'a': // entered a
13 printf("little a\n");
14 case 'A': // entered A
15 printf("big A\n");
16 printf("append mode\n");
17 break; // go to end of switch
18 case 'q': // entered q
19 printf("Quitting\n");
20 return 0; // return from main
21 default: // entered anything else
22 printf("other '%c'\n",c);
23 break; // go to end of switch
24 } // end of switch
25 }
26 return 0;
27 }

49

A Program is Born: Compile, Assemble, Link, Load
▶ Write some C code in program.c
▶ Compile it with toolchain like GNU Compiler Collection

gcc -o program prog.c
▶ Compilation is a multi-step process

▶ Check syntax for correctness/errors
▶ Perform optimizations on the code if possible
▶ Translate result to Assembly Language for a specific target

processor (Intel, ARM, Motorola)
▶ Assemble the code into object code, binary format (ELF)

which the target CPU understands
▶ Link the binary code to any required libraries (e.g. printing) to

make an executable
▶ Result: executable program, but. . .
▶ To run it requires a loader: program which copies executable

into memory, initializes any shared library/memory references
required parts, sets up memory to refer to initial instruction

50

Review Exercise: Memory Review

1. How do you allocate memory on the Stack? How do you
de-allocate it?

2. How do you allocate memory dynamically (on the Heap)?
How do you de-allocate it?

3. What other parts of memory are there in programs?
4. How do you declare an array of 8 integers in C? How big is it

and what part of memory is it in?
5. Describe several ways arrays and pointers are similar.
6. Describe several ways arrays and pointers are different.
7. Describe how the following two arithmetic expressions differ.

int x=9, y=20;
int *p = &x;
x = x+1;
p = p+1;

51

Answers: Memory Review

1. How do you allocate memory on the Stack? How do you de-allocate it?
Declare local variables in a function and call the function. Stack frame
has memory for all locals and is de-allocated when the function
finishes/returns.

2. How do you allocate memory on the Heap? How do you de-allocate it?
Make a call to ptr = malloc(nbytes) which returns a pointer to the
requested number of bytes. Call free(ptr) to de-allocate that memory.

3. What other parts of memory are there in programs?
Global area of memory has constants and global variables. Text area has
binary assembly code for CPU instructions.

4. How do you declare an array of 8 integers in C? How big is it and what
part of memory is it in?
An array of 8 ints will be 32 bytes big (usually).
On the stack: int arr[8]; De-allocated when function returns.
On the heap: int *arr = malloc(sizeof(int) * 8); Deallocated with
free(arr);

52

Answers: Memory Review

5. Describe several ways arrays and pointers are similar.
Both usually encoded as an address, can contain 1 or more items, may
use square brace indexing like arr[3] = 17; Interchangeable as arguments
to functions. Neither tracks size of memory area referenced.

6. Describe several ways arrays and pointers are different.
Pointers may be deref’d with *ptr; can’t do it with arrays. Can change
where pointers point, not arrays. Arrays will be on the Stack or in Global
Memory, pointers may also refer to the Heap.

7. Describe how the following two arithmetic expressions differ.
int x=9, y=20; // x at #1024
int *p = &x; // p hold VALUE #1024 (points at x)
x = x+1; // x is now 10: normal arithmetic
p = p+1; // p is now #1028: pointer arithmetic

// may or may not point at y

53

