
CMSC216: Introduction

Chris Kauffman

Last Updated:
Thu Aug 29 09:17:44 AM EDT 2024

1

CMSC216 1xx-2xx: Logistics
Introductions
▶ Prof Kauffman: profk@umd.edu
▶ Office Hours Tue 2-3pm / Wed 3-4pm in IRB 2226
▶ Slides: Linked from Canvas “Course Schedule/Materials”
▶ Static link: https://www.umd.edu/~profk/216/

NOTE: Videos posted for Course Mechanics, Coding Environment
Setup posted, first lecture; Lab01 walk-through Video to come

Reading
▶ Bryant/O’Hallaron: Ch 1
▶ C references: basic syntax,

types, compilation

Goals
▶ Basic Model of Computation
▶ Begin discussion of C

Assignments
Due Wed 04-Sep 11:59pm
▶ Coding Env Setup
▶ Lab01: Setup, submit to

Gradescope
▶ HW01: Basics, online

Gradescope Quiz
How is Lab01 going? 2

https://www.umd.edu/~profk/216/

“Von Kauffman” Model: CPU, Memory, Screen, Program
Most computers have 4 basic, physical components1

1. CPU: can execute “instructions”
2. CONTROL: CPU knows WHICH instruction to execute
3. MEMORY: data is stored and can change
4. Some sort of Input/Output device like a SCREEN (optional)

CPU understands some set of instructions; a sequence of
instructions is a program that changes MEMORY and SCREEN

Example of a Running Computer Program
CPU: at instruction 10: MEMORY: SCREEN:
> 10: set #1024 to 195 | Addr | Value |

11: set #1028 to 21 |-------+-------|
12: sum #1024,#1028 into #1032 | #1032 | -137 |
13: print #1024, "plus", #1028 | #1028 | 12 |
14: print "is", #1032 | #1024 | 19 |

1Of course it’s a little more complex than this but the addage, “All models
are wrong but some are useful” applies here. This class is about asking “what
is really happening?” and going deep down the resulting rabbit hole.

3

https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong

Sample Run Part 1

CPU: at instruction 10: MEMORY: SCREEN:
> 10: set #1024 to 195 | Addr | Value |

11: set #1028 to 21 |-------+-------|
12: sum #1024,#1028 into #1032 | #1032 | -137 |
13: print #1024, "plus", #1028 | #1028 | 12 |
14: print "is", #1032 | #1024 | 19 |

CPU: at instruction 11: MEMORY: SCREEN:
10: set #1024 to 195 | Addr | Value |

> 11: set #1028 to 21 |-------+-------|
12: sum #1024,#1028 into #1032 | #1032 | -137 |
13: print #1024, "plus", #1028 | #1028 | 12 |
14: print "is", #1032 | #1024 | 195 |

CPU: at instruction 12: MEMORY: SCREEN:
10: set #1024 to 195 | Addr | Value |
11: set #1028 to 21 |-------+-------|

> 12: sum #1024,#1028 into #1032 | #1032 | -137 |
13: print #1024, "plus", #1028 | #1028 | 21 |
14: print "is", #1032 | #1024 | 195 |

4

Sample Run Part 2

CPU: at instruction 13: MEMORY: SCREEN:
10: set #1024 to 195 | Addr | Value |
11: set #1028 to 21 |-------+-------|
12: sum #1024,#1028 into #1032 | #1032 | 216 |

> 13: print #1024, "plus", #1028 | #1028 | 21 |
14: print "is", #1032 | #1024 | 195 |

CPU: at instruction 14: MEMORY: SCREEN:
10: set #1024 to 195 | Addr | Value | 195 plus 21
11: set #1028 to 21 |-------+-------|
12: sum #1024,#1028 into #1032 | #1032 | 216 |
13: print #1024, "plus", #1028 | #1028 | 21 |

> 14: print "is", #1032 | #1024 | 195 |

CPU: at instruction 15: MEMORY: SCREEN:
10: set #1024 to 195 | Addr | Value | 195 plus 21
11: set #1028 to 21 |-------+-------| is 216
12: sum #1024,#1028 into #1032 | #1032 | 216 |
13: print #1024, "plus", #1028 | #1028 | 21 |
14: print "is", #1032 | #1024 | 195 |

> 15:

5

Observations: CPU and Program Instructions
▶ Program instructions are usually small, simple operations:

▶ Put something in a specific memory cell using its address
▶ Copy the contents of one cell to another
▶ Do arithmetic (+, -, *, /) on cells or constants
▶ Print stuff to the screen

▶ The CPU keeps track of which instruction to execute next
▶ After executing an instruction, CPU advances to next

instruction BUT jumping around to distant instructions is
also possible: conditional and iterative execution

▶ Previous program is in pseudocode in which instructions can
have any meaning understood by a human reader2

▶ Real machines require more precise instruction definitions as
there are no smart humans to interpret them, only dumb
physics to blindly execute them

2The pseudcode shown resembles a low-level assembly language rather
than a high level language like C or Java

6

Observations: Memory Cells and the Screen

Memory Cells
▶ Memory cells have

Fixed ADDRESS
Changeable CONTENTS

▶ Random Access Memory
(RAM): the value in any
memory cell can be retrieved
FAST using its address

▶ My laptop has 16GB of
memory = 4,294,967,296
(4 billion) integer boxes (!)

▶ Cell Address #’s never
change: always cell #1024

▶ Cell Contents / Values often
change: set #1024 to 42

Screen versus Memory
▶ Nothing is on the screen

until it is explicitly print-ed
by the program

▶ Don’t get to see memory
while the program runs:
print stuff while
debugging programs so
you can see it

▶ Forming a mental model of
what values are in memory
and how they relate to one
another is a valuable skill
which we will practice, often
by drawing memory
explicitly

7

Variables are Named Memory Cells
▶ Dealing with raw memory addresses is tedious
▶ Any programming language worth its salt will have variables:

symbolic names associated with memory cells
▶ You pick variable names; compiler/interpreter automatically

translates to memory cell/address
PROGRAM ADDRESSES ONLY
CPU: at instruction 50: MEMORY:
> 50: copy #1024 to #1032 | Addr | Value |

51: copy #1028 to #1024 |-------+-------|
52: copy #1032 to #1028 | #1032 | ? |
53: print "first",#1024 | #1028 | 31 |
54: print "second",#1028 | #1024 | 42 |

PROGRAM WITH NAMED CELLS MEMORY:
CPU: at instruction 51: | Addr | Name | Value |
> 50: copy x to temp |-------+------+-------|

51: copy y to x | #1032 | temp | ? |
52: copy temp to y | #1028 | y | 31 |
53: print "first",x | #1024 | x | 42 |
54: print "second",y

8

Correspondence of C Programs to Memory
▶ C programs require memory cell names to be declared with the type of

data they will hold (a novel idea when C was invented).
▶ The equal sign (=) means

“store the result on the right in the cell named on the left”
▶ Creating a cell and giving it a value can be combined

int x; // need a cell named x, holds an integer
x = 42; // put 42 in cell x
int y = 31; // need a cell named y and put 31 in it
int tmp = x + y; // cell named tmp, fill with sum of x and y

Other Rules
▶ C/Java compilers read whole functions to figure out how many memory

cells are needed based on declarations like int a; and int c=20;

▶ Lines that only declare a variable do nothing except indicate a cell is
needed to the compiler

▶ In C, uninitialized variables may have arbitrary crud in them making them
dangerous to use: we’ll find out why in this course

9

Exercise: First C Snippet
▶ Lines starting with // are comments, not executed
▶ printf("%d %d\n",x,y) shows variable values on the screen as

decimal integers

CPU: at line 50 MEMORY: SCREEN:
> 50: int x; | Addr | Name | Value |

51: x = 42; |-------+------+-------|
52: int y = 31; | #1032 | y | ? |
53: // swap x and y (?) | #1028 | x | ? |
54: x = y; | #1024 | | |
55: y = x;
56: printf("%d %d\n",x,y);

With your nearby colleagues:

1. Show what memory / screen look like after running the program

2. Correct the program if needed: make swapping work

I will chat with a couple folks about their answers which will earn
participation credit leading to Bonus Engagement Points.

10

Answer: First C Snippet
CPU: at line 54 MEMORY: SCREEN:

50: int x; | Addr | Name | Value |
51: x = 42; |-------+------+-------|
52: int y = 31; | #1032 | y | 31 |
53: // swap x and y (?) | #1028 | x | 42 |

> 54: x = y; | #1024 | | |
55: y = x;
56: printf("%d %d\n",x,y);

CPU: at line 55 MEMORY: SCREEN:
50: int x; | Addr | Name | Value |
51: x = 42; |-------+------+-------|
52: int y = 31; | #1032 | y | 31 |
53: // swap x and y (?) | #1028 | x | 31 |
54: x = y; | #1024 | | |

> 55: y = x;
56: printf("%d %d\n",x,y);

CPU: at line 57 MEMORY: SCREEN:
50: int x; | Addr | Name | Value | 31 31
51: x = 42; |-------+------+-------|
52: int y = 31; | #1032 | x | 31 |
53: // swap x and y (?) | #1028 | y | 31 |
54: x = y; | #1024 | | |
55: y = x;
56: printf("%d %d\n",x,y);

> 57: ...

Clearly incorrect: how does one swap values properly? (fix swap_main_bad.c)
11

First Full C Program: swap_main.c
1 /* First C program showing a main() function. Demonstrates proper
2 swapping of two int variables declared in main() using a third
3 temporary variable. Uses printf() to print results to the screen
4 (standard out). Compile run with:
5
6 > gcc swap_main.c
7 > ./a.out
8 */
9

10 #include <stdio.h> // headers declare existence of functions
11 // printf in this case
12
13 int main(int argc, char *argv[]){ // ENTRY POINT: always start in main()
14 int x; // declare a variable to hold an integer
15 x = 42; // set its value to 42
16 int y = 31; // declare and set a variable
17 int tmp = x; // declare and set to same value as x
18 x = y; // put y's value in x's cell
19 y = tmp; // put tmp's value in y's cell
20 printf("x is: %d y is: %d\n",x,y); // print the values of x and y
21 return 0; // return from main(): 0 indicates success
22 }

▶ Swaps variables using tmp space (exotic alternatives exist)
▶ Executables always have a main() function: starting point
▶ Note inclusion of stdio.h header to declare printf()

exists, allusions to C’s (limited and clunky) library system
12

https://stackoverflow.com/questions/1826159/swapping-two-variable-value-without-using-third-variable

Exercise: Functions in C, swap_func.c
1 // C program which attempts to swap using a function.
2 //
3 // > gcc swap_func.c
4 // > ./a.out
5
6 #include <stdio.h> // declare existence printf()
7 void swap(int a, int b); // function exists, defined below main
8
9 int main(int argc, char *argv[]){ // ENTRY POINT: start executing in main()

10 int x = 42;
11 int y = 31;
12 swap(x, y); // invoke function to swap x/y (?)
13 printf("%d %d\n",x,y); // print the values of x and y
14 return 0;
15 }
16
17 // Function to swap (?) contents of two memory cells
18 void swap(int a, int b){ // arguments to swap
19 int tmp = a; // use a temporary to save a
20 a = b; // a <- b
21 b = tmp; // b <- tmp=a
22 return;
23 }

Does swap() “work”? Discuss with neighbors and justify why the
code works or why not

13

Answers: Swapping in a Function is Tricky

swap_func.c will not print swapped values
▶ If you thought the values would print swapped, you’re about

to learn something interesting
▶ If you were confident they would not print swapped but had

difficulty articulating why, that’s great: this class is here to
give the vocab to do so

▶ If you knew the values wouldn’t swap and also knew how to
explain it well, tune in anyway as the subsequent explanation
will introduce conventions used for the rest of the course

Why No Swap??
Necessitates introducing the Function Call Stack which is where
functions store their local variables and parameters

14

Answers: The Function Call Stack and swap()
9: int main(...){ STACK: Caller main(), prior to swap()

10: int x = 42; | FRAME | ADDR | SYM | VALUE |
11: int y = 31; |---------+-------+-----+-------|

+-<12: swap(x, y); | main() | #2048 | x | 42 | stack frame
| 13: printf("%d %d\n",x,y); | line:12 | #2044 | y | 31 | for main()
| 14: return 0; |---------+-------+-----+-------|
V 15: }
| STACK: Callee swap() takes control
| 18: void swap(int a, int b){ | FRAME | ADDR | SYM | VALUE |
+->19: int tmp = a; |---------+-------+-----+-------|

20: a = b; | main() | #2048 | x | 42 | main() frame
21: b = tmp; | line:12 | #2044 | y | 31 | now inactive
22: return; |---------+-------+-----+-------|
23: } | swap() | #2040 | a | 42 | new frame

| line:19 | #2036 | b | 31 | for swap()
| | #2032 | tmp | ? | now active

▶ Caller function main() and Callee function swap()
▶ Caller pushes a stack frame onto the function call stack
▶ Frame has space for All Callee parameters/locals vars
▶ Caller tracks where it left off to resume later
▶ Caller copies values to Callee frame for parameters
▶ Callee begins executing at its first instruction

15

Answers: Function Call Stack: Returning from swap()
9: int main(...){ STACK: Callee swap() returning

10: int x = 42; | FRAME | ADDR | SYM | VALUE |
11: int y = 31; |---------+-------+-----+-------|
12: swap(x, y); | main() | #2048 | x | 42 | inactive

+->13: printf("%d %d\n",x,y); | line:12 | #2044 | y | 31 |
| 14: return 0; |---------+-------+-----+-------|
| 15: } | swap() | #2040 | a | 31 | about to
| | line:22 | #2036 | b | 42 | return
^ 18: void swap(int a, int b){ | | #2032 | tmp | 42 |
| 19: int tmp = a;
| 20: a = b; STACK: Caller main() gets control back
| 21: b = tmp; | FRAME | ADDR | SYM | VALUE |
+-<22: return; |---------+-------+-----+-------|

23: } | main() | #2048 | x | 42 | now
| line:13 | #2044 | y | 31 | active
|---------+-------+-----+-------|

▶ On finishing, Callee stack frame pops off, Control returns to
Caller which resumes executing next instruction

▶ Callee may pass a return value to Caller but otherwise does
not directly affect Caller stack frame on return

▶ swap() does NOT swap the variables x,y in main(), only its
own local variables a,b

16

Motivation for C

Bare Metal

Pure Abstraction

Wires

VHDL

Binary
Opcodes

Assembly C
C++, D

Java

Python, JS
Ruby, Shell

Prolog, Lisp
ML,Haskell

Bread
Board

Electrons

Source

If this were Java, Python, many
others, discussion would be over:
▶ Provide many safety and

convenience features
▶ Insulate programmer from

hardware for ease of use

C presents many CPU capabilities
directly
▶ Very few safety features
▶ Little between programmer and

hardware
You just have to know C. Why?
Because for all practical purposes, every
computer in the world you’ll ever use is
a von Neumann machine, and C is a
lightweight, expressive syntax for the
von Neumann machine’s capabilities.
–Steve Yegge, Tour de Babel 17

http://bpmredux.files.wordpress.com/2012/03/man-vs-machine.jpg
https://sites.google.com/site/steveyegge2/tour-de-babel

Von Neumann Machine Architecture (Wikip)
Processing
▶ Wires/gates that accomplish

fundamental ops
▶ +, -, *, AND, OR, move, copy,

shift, etc.
▶ Ops act on contents of memory

cells to change them

Control
▶ Memory address of next

instruction to execute
▶ After executing, move ahead

one unless instruction was to
jump elsewhere

Memory
▶ Giant array of bits/bytes so

everything is represented as
1’s and 0’s, including
instructions

▶ Memory cells accessible by
address number

Input/Output
▶ Allows humans to interpret

what is happening
▶ Often special memory

locations for screen and
keyboard

Wait, these items seem kind of familiar. . . 18

https://en.wikipedia.org/wiki/Von_Neumann_architecture

Exercise: C allows direct use of memory cell addresses
Syntax Meaning
&x Address of: memory address of variable x
int *a Pointer Variable: a stores a memory address
*a Dereference: get/set the value pointed to by a

Where/how are these used in the code below?
1 // swap_pointer.c: swaps values using a function with pointer arguments.
2
3 #include <stdio.h> // declare existence printf()
4 void swap_ptr(int *a, int *b); // function exists, defined below main
5
6 int main(int argc, char *argv[]){ // ENTRY POINT: start executing in main()
7 int x = 42;
8 int y = 31;
9 swap_ptr(&x, &y); // call swap() with addresses of x/y

10 printf("%d %d\n",x,y); // print the values of x and y
11 return 0;
12 }
13
14 // Function to swap contents of two memory cells
15 void swap_ptr(int *a, int *b){ // a/b are addresses of memory cells
16 int tmp = *a; // go to address a, copy value int tmp
17 *a = *b; // copy val at addr in b to addr in a
18 *b = tmp; // copy temp into address in b
19 return;
20 } 19

Swapping with Pointers/Addresses: Call Stack
9: int main(...){ STACK: Caller main(), prior to swap()

10: int x = 42; | FRAME | ADDR | NAME | VALUE |
11: int y = 31; |---------+-------+------+-------|

+-<12: swap_ptr(&x, &y); | main() | #2048 | x | 42 |
| 13: printf("%d %d\n",x,y); | line:12 | #2044 | y | 31 |
| 14: return 0; |---------+-------+------+-------|
V 15: }
| STACK: Callee swap() takes control
| 18: void swap_ptr(int *a,int *b){ | FRAME | ADDR | NAME | VALUE |
+->19: int tmp = *a; |---------+-------+------+-------|

20: *a = *b; | main() | #2048 | x | 42 |<-+
21: *b = tmp; | line:12 | #2044 | y | 31 |<-|+
22: return; |---------+-------+------+-------| ||
23: } | swap_ptr| #2036 | a | #2048 |--+|

| line:19 | #2028 | b | #2044 |---+
| | #2024 | tmp | ? |

▶ Syntax &x reads “Address of cell associated with x” or just
“Address of x”. Ampersand & is the address-of operator.

▶ Swap takes int *a: pointer to integer / memory address
▶ Values associated with a/b are the addresses of other cells

20

Swapping with Pointers/Addresses: Dereference/Use

9: int main(...){ LINE 19 executed: tmp gets 42
10: int x = 42; | FRAME | ADDR | NAME | VALUE |
11: int y = 31; |---------+-------+------+-------|
12: swap_ptr(&x, &y); | main() | #2048 | x | 42 |<-+
13: printf("%d %d\n",x,y); | line:12 | #2044 | y | 31 |<-|+
14: return 0; |---------+-------+------+-------| ||
15: } | swap_ptr| #2036 | a | #2048 |--+|

| line:20 | #2028 | b | #2044 |---+
18: void swap_ptr(int *a,int *b){ | | #2024 | tmp | ?->42 |
19: int tmp = *a; // copy val at #2048 to #2024

>20: *a = *b;
21: *b = tmp;
22: return;
23: }

▶ Syntax *a reads “Dereference a to operate on the cell pointed
to by a” or just “Deref a”

▶ Line 19 dereferences via * operator:
▶ Cell #2036 (a) contains address #2048,
▶ Copy contents of #2048 (42) into #2024 (tmp)

21

Swapping with Pointers/Addresses: Dereference/Assign
9: int main(...){ LINE 20 executed: alters x using a

10: int x = 42; | FRAME | ADDR | NAME | VALUE |
11: int y = 31; |---------+-------+------+-------|
12: swap_ptr(&x, &y); | main() | #2048 | x |42->31 |<-+
13: printf("%d %d\n",x,y); | line:12 | #2044 | y | 31 |<-|+
14: return 0; |---------+-------+------+-------| ||
15: } | swap_ptr| #2036 | a | #2048 |--+|

| line:21 | #2028 | b | #2044 |---+
18: void swap_ptr(int *a,int *b){ | | #2024 | tmp | 42 |
19: int tmp = *a;
20: *a = *b; // copy val at #2044 (31) to #2048 (was 42)

>21: *b = tmp;
22: return;
23: }

▶ Pointer Deref on Right Side fetches a value from a pointer
location

▶ Pointer Deref on Left Side stores a value at a pointer location
▶ Line 20: Deref on both Left and right side of assignment

▶ a and b contain pointers, not changed
▶ x and y are pointed at, can change

22

Swapping with Pointers/Addresses: Deref 2
9: int main(...){ LINE 21 executed: alters y using b

10: int x = 42; | FRAME | ADDR | NAME | VALUE |
11: int y = 31; |---------+-------+------+-------|
12: swap_ptr(&x, &y); | main() | #2048 | x | 31 |<-+
13: printf("%d %d\n",x,y); | line:12 | #2044 | y |31->42 |<-|+
14: return 0; |---------+-------+------+-------| ||
15: } | swap_ptr| #2036 | a | #2048 |--+|

| line:22 | #2028 | b | #2044 |---+
18: void swap_ptr(int *a,int *b){ | | #2024 | tmp | 42 |
19: int tmp = *a;
20: *a = *b;
21: *b = tmp; // copy val at #2024 (42) to #2044 (was 31)

>22: return;
23: }

▶ Line 21: dereference on left-hand side
*b = ...
stores new value at address #2044

▶ Use of variable bare name always retrieves value it that cell
▶ tmp retrieves an int like 42
▶ a retrieves a pointer like #2048

23

Swapping with Pointers/Addresses: Returning

9: int main(...){ LINE 22: prior to return
10: int x = 42; | FRAME | ADDR | NAME | VALUE |
11: int y = 31; |---------+-------+------+-------|
12: swap_ptr(&x, &y); | main() | #2048 | x | 31 |<-+

+->13: printf("%d %d\n",x,y); | line:12 | #2044 | y | 42 |<-|+
| 14: return 0; |---------+-------+------+-------| ||
| 15: } | swap_ptr| #2036 | a | #2048 |--+|
| | line:22 | #2028 | b | #2044 |---+
| 18: void swap_ptr(int *a,int *b){ | | #2024 | tmp | 42 |
| 19: int tmp = *a;
| 20: *a = *b; LINE 12 finished/return pops frame
| 21: *b = tmp; | FRAME | ADDR | NAME | VALUE |
+-<22: return; |---------+-------+------+-------|

23: } | main() | #2048 | x | 31 |
| line:13 | #2044 | y | 42 |
|---------+-------+------+-------|

▶ swap_ptr() finished so frame pops off
▶ Variables x,y in main() have changed due to use of

references to them.

24

Aside: Star/Asterisk * has 3 uses in C
1. Multiply numbers as in

w = c*d;
2. Declare a pointer variable as in

int *x; // pointer to integer(s)
int b=4;
x = &b; // point x at b
int **r; // pointer to int pointer(s)

3. Dereference a pointer variable as in
int p = *x; // x must be an int pointer

// retrieve contents at address
Three different context sensitive meanings for the same symbol
makes * hard on humans to parse, a BAD move by K&R.

int z = *x * *y + *(p+2); // standard, 'unambiguous' C
The duck is ready to eat. // English is more ambiguous

25

Some Common Examples and Errors
▶ Learning syntax and semantics of pointers requires some

practice, get started with below examples
▶ Won’t go through these in much detail YET but over next

couple weeks will discuss at length

// pointer_examples.c
// 1: proper pointer assignment
int a1 = 11;
int *p1 = &a1; // cool
int b1 = 55;
p1 = &b1; // cool

// 2: improper pointer assignment
int a2 = 13;
int *p2 = a2; // ERROR

// 3: proper pointer copying
int a3 = 15;
int *p3 = &a3;
int *q3 = p3; // cool

// 4: proper pointer deref
int a4 = 17;
int *p4 = &a4;
int b4 = *p4; // cool

// 5: improper int assign (no deref)
int a5 = 19;
int *p5 = &a5;
int b5 = p5; // ERROR

26

Important Principle: Non-local Changes

▶ Pointers allow functions to
change variables associated
with other running functions

▶ Common beginner example:
scanf() family which is
used to read values from
terminal or files

▶ Snippet from scanf_demo.c
1 int main(...){
2 int num = -1;
3 scanf("%d", &num); // addr
4 printf("%d\n",num); // val
4 return 0;
5 }

▶ See scanf_error.c :
forgetting & yields great
badness

scanf() called
| FRAME | ADDR | NAME | VALUE |
|----------+-------+------+-------|
| main():3 | #2500 | num | -1 |<-+
|----------+-------+------+-------| |
| scanf() | #2492 | fmt | #400 | |
| | #2484 | arg1 | #2500 |--+

scanf() changes contents of #2500
| FRAME | ADDR | NAME | VALUE |
|----------+-------+------+-------|
| main():3 | #2500 | num | 5 |<-+
|----------+-------+------+-------| |
| scanf() | #2492 | fmt | #400 | |
| | #2484 | arg1 | #2500 |--+

scanf() returns
| FRAME | ADDR | NAME | VALUE |
|----------+-------+------+-------|
| main():4 | #2500 | num | 5 |
|----------+-------+------+-------|

27

Uncle Ben Said it Best. . .

All of these apply to our context..

▶ Pointers allow any line of
C programs to modify any
of its data

▶ A BLESSING: fine control of
memory → efficiency,
machine’s true capability

▶ A CURSE: opens up many
errors not possible in
Java/Python which restrict
use of memory
1972 - Dennis Ritchie invents a
powerful gun that shoots both
forward and backward simulta-
neously. Not satisfied with the
number of deaths and perma-
nent maimings from that inven-
tion he invents C and Unix.
– A Brief, Incomplete, and
Mostly Wrong History of Pro-
gramming Languages

28

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html

Beneath the C
C is “high-level” as it abstracts away from a real machine. It must
be translated to lower levels to be executed.

Assembly Language
▶ Specific to each CPU

architecture (Intel, etc)
▶ Still “human readable” but

fairly directly translated to
binary using Assemblers

Binary Opcodes
▶ 1’s and 0’s, represent the

digital signal of the machine
▶ Codes corresponds to

instructions directly
understood by processor

INTEL x86-64 ASSEMBLY HEXADECIMAL/BINARY OPCODES
cmpl $1, %ecx 1124: 83 f9 01
jle .END 1127: 7e 1e = 0111 1110 0001 1110
movl $2, %esi 1129: be 02 00 00 00
movl %ecx,%eax 112e: 89 c8
cqto 1130: 48 99
idivl %esi 1132: f7 fe
cmpl $1,%edx 1134: 83 fa 01
jne .EVEN 1137: 75 07

Looks like fun, right? You bet it is! Assembly coding is 6 weeks away. . .
29

CMSC216: Course Goals

▶ Basic proficiency at C programming
▶ Knowledge of running programs in physical memory including

the stack, heap, global, and text areas of memory
▶ Understanding of the essential elements of assembly languages
▶ Knowledge of the correspondence between high-level program

constructs.
▶ Ability to use a symbolic debugger
▶ Basic understanding of how data is encoded in binary
▶ Understanding the process abstraction of running programs,

ability to create and manipulate processes
▶ Basic understanding of execution threads, their relation to

processes, the ability to create and manipulate threads

30

