CSCI 2021: Binary, Integers, Arithmetic

Chris Kauffman

Last Updated:
Mon Feb 13 11:55:32 AM CST 2023

Logisitcs

Reading
Bryant/O’Hallaron Ch 2.1-2.3

Goals
» Finish C Overview

» Binary Notation and
Relations

» Integers in binary

» Arithmetic operations

Assignments
» P1 Ongoing
» Lab03 on File Input
» HWO3 on Binary Ints

Date Event

Wed 01-Feb Structs / File IO
Lab03 / HWO03

Fri 03-Feb Binary Ints/Chars

Mon 06-Feb Binary Ints/Chars

Tue 07-Feb Unified Office Hours
~in Lind 325
Lab03/HWO03 Due

Wed 08-Feb Lec: Practice Exam
Lab04/HWO04: Review
P1 Due

Fri 10-Feb Exam 1

Prev Lab/HW Solutions Posted
Questions??

Announcements: Unified Office Hours

» To help students finish up Project 1, all staff office hours will
be held in Lind 325 on Tue 07-Feb. Staff will likely be present
all day in that room with a shared Queue

» Expect these office hours session to be popular (e.g. crowded)
and plan on there being some wait time before staff get to you

» Have your Office Hours Help Request Form ready for staff
when your turn comes up: https://z.umn.edu/2021help

https://z.umn.edu/2021help

Exam 1 Logistics

» In-person in class on Fri 10-Feb
» Exam runs lecture period: 50min
> Expect 3 sides of paper (front, back, front)

Open Resource Exam

Open Resource Exam Rules

» Sign the log on turning in your exam to show attendence
> Silence your devices and keep screens visible to instructor
» Protect your work from theft

» You may be asked to show your Student ID

Can Use Your Own Cannot Use
Physical, Digital, or Online: » General Internet
> Notes, Slides, Dictionary » Piazza Discussion
» Your own previous Exams » Online calculators,
» Textbook(s) (online ok) converters, tables
» Editor, Compiler, Vole, SSH » Chat, Texting, IM, etc.
» Your code / Instructor code » Communication with anyone
> Locally stored webpages but Instructor/Proctor
> Online Manual Pages If you aren't sure of something,
http://man.he.net/ ask

ex: search for ascii

Unsigned Integers: Decimal and Binary

» Unsigned integers are always positive:
unsigned int i = 12345;

» To understand binary, recall how decimal numbers “work”

Decimal: Base 10 Example Binary: Base 2 Example
Each digit adds on a power 10 Each digit adds on a power 2
80,345 =5 x 10°+ 5 ones 110015 =1 x 294 1 ones
4 x 101+ 40 tens 0x 24+ 0 twos
3 x 10%+ 300 hundreds 0x 2%+ 0 fours
0x 103+ 0 thousands 1x 234 8 eights
8 x 10* 80,000 ... 1x 24+ 16 sixteens
5 + 404300 + 80, 000 =14+8+16 =25

SO, 110012 = 2510

Exercise: Convert Binary to Decimal

Base 2 Example:

11001 =1 x 2%+

0x 28+

0 x 224

1x 254+

1x 2%+
=1+8+16

SO, 110012 = 2510

co o O =

16
=25

Try With a Neighbor

Convert the following two
numbers from base 2 (binary) to
base 10 (decimal)

> 111
> 11010
> 01100001

Answers: Convert Binary to Decimal

1115 =1 x 22 +1x 2" +1x2°
=1x4+1x2+1x1
=T10
11010, =1 x 2 +1x 22 +0x 22 +1x 2" + 0 x 2°
=1x164+1x84+0x44+1x24+0x1
=261
011000015 =0 x 27 +1x 26 +1 x 25 40 x 2*

+0x224+0x22+0x2' +1x2°

=0 x 1284+ x64+1x32+0x 16
+0x84+0x44+0x24+1x1

=979

Note: last example ignores leading 0’s

The Other Direction: Base 10 to Base 2
Converting a number from base 10 to base 2 is easily done using
repeated division by 2; keep track of remainders
Convert 124 to base 2:

124 -2 =62 rem 0
62 +2 =31 rem 0
31+-2=15 rem 1
15+-2=7 rem 1
7+2=3 rem 1
3+2=1 rem 1
1+-2=0 rem 1

> Last step got 0 quotient so we’re done.

» Binary digits are in remainders in reverse

> Answer: 1111100

» Check:
0+0422+23+2142°+26=448+16+32+64 =124

Decimal, Hexadecimal, Octal, Binary

> Numbers exist independent of any writing system
» Can write the same number in a variety of bases

» C provides syntax for most common bases used in computing

Decimal Binary Hexadecimal Octal
Base 10 2 16 8
Mathematical 125 1111101, 7D16 175g
C Prefix None 0b. .. 0x. . 0...
C Example 125 0b1111101 0Ox7D 0175

» Hexadecimal often used to express long-ish byte sequences
Larger than base 10 so for 10-15 uses letters A-F

> Examine number_writing.c and table.c for patterns

> Expectation: Gain familiarity with doing conversions between
bases as it will be useful in practice

10

Hexadecimal: Base 16

» Hex: compact way to write

) Hex to 4 bit equivalence
bit sequences

» One byte is 8 bits Dec Bits Hex
0 0000 O
» Each Hex character 1 0001 1
represents 4 bits 2 0010 2
» Each Byte is 2 Hex Digits 3 0011 3
e MR . | 4 0100 4
| Byte | Hex | Dec | 5 0101 5
—— PO — P 6 0110 6
| 0101 0111 | 57 = 5%16 + 7 | 87 | 7 0111 7
| 5 7 | I | 8 1000 8
: 3011 éi(l)g : 3C = 3%16 + 12 : 60 : 9 1001 9
| 1110 0010 | E2 = 14%16 + 2 | 226 | 10 1010 A
| E=14 2 | I | 11 1011 B
| ----- e S 12 1100 C
13 1101 D
14 1110 E
15 1111 F

Exercise: Conversion Tricks for Hex and Octal

Examples shown in this week’s HW, What tricks are illustrated?
|——- + + - +

| Decimal | Byte = 8bits | Byte by 4 | Hexadecimal

|——- + + - +

| 87 | 01010111 | bin: 0101 0111 | 57 = 5%16 + 7

| | | hex: 5 7 | hex dec

| | | |

| 60 | 00111100 | bin: 0011 1100 | 3C = 3%16 + 12

| | | hex: 3 C=12 | hex dec

| | | |

| 226 | 11100010 | bin: 1110 0010 | E2 = 14x%16 + 2

| | | hex: E=14 2 | hex dec

[+- + -—- + e
| Decimal | Byte = 8bits | Byte by 3 | Octal

| === +- + -—- + o
| 87 | 01010111 | bin: 01 010 111 | 127 = 1872 + 2%8 + 7
| | | oct: 1 2 7 | oct dec

| | | |

| 60 | 00111100 | bin: 00 111 100 | 074 = 0%872 + 7*8 + 4
| | | oct: 0 7 4 | oct dec

| | | |

| 226 | 11100010 | bin: 11 100 010 | 342 = 3*872 + 4%8 + 2
| | | oct: 3 4 2 | oct dec

Answers: Conversion Tricks for Hex and Octal

» Converting between Binary and Hexadecimal is easiest when
grouping bits by 4: each 4 bits corresponds to one
hexadecimal digit

bin: 0101 0111 bin: 1110 0010
hex: b 7 hex: E=14 2

» Converting between Binary and Octal is easiest when grouping
bits by 3: each 3 bits corresponds to one octal digit
bin: 01 010 111 ©bin: 11 100 010
oct: 1 2 7 oct: 3 4 2

13

Character Coding Conventions
» Would be hard for people to share words if they interpretted
bits as letters differently
» ASCII: American Standard Code for Information Interchange
An old standard for bit/character correspondence
P 7 bits per character, includes upper, lower case, punctuation

Dec Hex Binary Char Dec Hex Binary Char
65 41 01000001 78 4E 01001110
66 42 01000010 79 4F 01001111
67 43 01000011 80 50 01010000
68 44 01000100 81 51 01010001
69 45 01000101 82 52 01010010
70 46 01000110 83 53 01010011
71 47 01000111 84 54 01010100
72 48 01001000 85 55 01010101
73 49 01001001 86 56 01010110
74 4A 01001010 87 57 01010111
75 4B 01001011 88 58 01011000
76 4C 01001100 89 59 01011001
77 4D 01001101 90 5A 01011010
91 5B 01011101 97 61 01100001
92 5C 01011110 98 62 01100010

—~—lzrx-—TIToTmoOow>»
TUINKXS<CHVLIOTOZ

Unicode
» World: Why can’t | write
27
in my code/web address/email?

» America: ASCII has 128 chars.
Deal with it.

» World: Seriously?

» America: We invented
computers. 'Merical

» World:

America: -+ Unicode?

v

> World: But my language takes
more bytes than American.

» America: Deal with it. 'Merica!

ASCII Uses 7 bits per char,
limited to 128 characters

UTF-8 uses 1-4 bytes per
character to represent many

more characters
(1,112,064 codepoints)

Uses 8th bit in a byte to
indicate extension to more than
a single byte

Requires software to understand
coding convention allowing
broader language support

ASCII is a proper subset of
UTF-8 making UTF-8
backwards compatible and
increasingly popular

15

Binary Integer Addition/Subtraction

Adding/subtracting in binary works the same as with decimal
EXCEPT that carries occur on values of 2 rather than 10

ADDITION #1

111 <-carries
0100 1010 = 74

+ 0101 1001 = 89
1010 0011 = 163

ADDITION #2
1111 1 <-carries
0110 1101 = 109
+ 0111 1001 121

1110 0110

230

SUBTRACTION #1

? <-carries

0111 1001
- 0001 0011
VVVVVVVVVVVVV
VVVVVVVVVVVVV
VVVVVVVVVVVVV

121
19

x12 <-carries

0111 0001 = 119
- 0001 0011 19

0110 0110

102

16

Two’s Complement Integers: Representing Negative Values

P> To represent negative integers, must choose a coding system

» Two’s complement is the most common for this
> Alternatives exist
» Signed magnitude: leading bit indicates pos (0) or neg (1)
» One’s complement: invert bits to go between positive negative
» Great advantage of two’s complement: signed and unsigned
arithmetic are identical
» Hardware folks only need to make one set of units for both
unsigned and signed arithmetic

17

Summary of Two’s Complement

Short explanation: most significant bit is associated with a
negative power of two.

UNSIGNED

7654 3210 :
ABCD EFGH :

A: 0/1 %
B: 0/1 %
C: 0/1 *

H: 0/1 *

UNSIGNED

BINARY
position
8 bits
+(277) *P0S*
+(276)
+(275)

+(270)
BINARY

: position
= +128

= +129

= +131

= +255

=0

= +1

= 45

= +127

7654 3210 :
ABCD EFGH :
A:
B:
C:

H:

TWO's COMPLEMENT (signed)

position
8-bits

0/1 * -(277) *NEG*

0/1 * +(276)
0/1 * +(275)

0/1 % +(270)

TWO's COMPLEMENT (signed)

7654 3210

1000 0000 = -128
1000 0001 = -127
1000 0011 = -1256
1111 1111 = -1
0000 0000 = O
0000 0001 = +1
0000 0101 = +5
0111 1111 = +127

: position

-128+1
-128+1+2

-128+1+2+4+. .+64

[

+127

]

18

Two’s Complement Notes

» Leading 1 indicates
negative, 0 indicates positive

» All 0’'s = Zero

» Positive numbers are
identical to unsigned

Conversion Trick
Positive — Negative

» Invert bits, Add 1
Negative — Positive

» Invert bits, Add 1

Same trick works both ways,
implemented in hardware for the

unary minus operator as in
int y = -x;

~ 0110 1000 +104 : negate

1001 0111 inverted

1001 1000 = -104

~ 1001 1000 = -104 : negate

0110 0111 = +103 inverted

0110 1000 = +104
Add Pos/Neg should give 0

1 1111 <-carries
0110 1000 = +104
+ 1001 1000 = -104

x 0000 0000 = zero

19

Overflow

» Sums that exceed the representation of the bits associated
with the integral type overflow

» Excess significant bits are dropped

» Addition can result in a sum smaller than the summands, even
for two positive numbers (!?)

» Integer arithmetic in fixed bits is a mathematical ring

Examples of Overflow in 8 bits
ADDITION #3 OVERFLOW ADDITION #4 OVERFLOW

1 1111 111 <-carries 1 1 <-carries
1111 1111 = 255 1010 1001 = 169

+ 0000 0001 = 1 + 1100 0001 = 193

1 0000 0000 = 256 1 0110 1010 = 362

x drop 9th bit x drop 9th bit

0000 0000 = 0O 0110 1010 = 106

20

Underflow

» Underflow occurs in
unsigned arithmetic when
values go below 0 (no longer
positive)

» Pretend that there is an
extra significant bit to carry
out subtraction

» Subtracting a positive
integer from a positive
integer may result in a
larger positive integer (?17?)

» Integer arithmetic in fixed
bits is a mathematical ring

Examples of 8-bit Underflow

SUBTRACTIION #2 UNDERFLOW
?<-carries

0000 0000 = O
- 0000 0001 = 1
VVVVVVVVVVVVV

?<-carries

1 0000 0000 = 256 (pretend)
- 0000 0001 = 1
VVVVVVVVVVVVV
X 2<-carries
0 1111 1110 = 256
- 0000 0001 = 1
1111 1111 = 255

21

Overflow and Underflow In C Programs

vvyyy

v

See over_under_flow.c for demonstrations in a C program.
No runtime errors for under/overflow
Good for hashing and cryptography

Bad for most other applications: system critical operations
should use checks for over-/under-flow

See textbook Ariane Rocket Crash which was due to overflow
of an integer converted from a floating point value

At the assembly level, there are condition codes indicating
that overflow has occurred

22

https://en.wikipedia.org/wiki/Ariane_5#Notable_launches

Endinaness: Byte ordering in Memory

>

>

>

Single bytes like ASCII characters lay out sequentially in
memory in increasing address
Multi-byte entities like 4-byte ints require decisions on byte
ordering
We think of a 32-bit int like this
Binary: 0000 0000 0000 0000 0001 1000 1110 1001
0 0 0 0 1 8 E 9
Hex : 000018E9
Decimal: 6377
But need to assign memory addresses to each byte
» Little Endian: least significant byte early
» Big Endian: most significant byte early
Example: Integer starts at address #1024

Address
LittleEnd: #1027 #1026 #1025 #1024
Binary: 0000 0000 0000 0000 0001 1000 1110 1001
0 0 0 0 1 8 E 9
BigEnd: #1024 #1025 #1026 #1027

Address
23

Little Endian vs. Big Endian

vvyyypy

v

Most modern machines use little endian by default
Processor may actually support big endian
Both Big and Little Endian have engineering trade-offs

At one time debated hotly among hardware folks: a la
Gulliver’s Travels conflicts

Intel Chips were little endian and have dominated computing
for several decades, set the precedent for modern platforms

Big endian byte order shows up in network programming;:
sending bytes over the network is done in big endian ordering

Examine show_endianness.c : uses C code to print bytes in
order, reveals whether a machine is Little or Big Endian

24

https://en.wikipedia.org/wiki/Gulliver%27s_Travels#Cultural_influences

Output of show_endianness.c

1 > cat show_endianness.c

2 // Show endiannes layout of a binary number in memory. Most machines

3 // are little endian so bytes will print leas signficant earlier.

4 #include <stdio.h>

5

6 int main(){

7 int bin = 0b00000000000000000001100011101001; // 6377

8 // | | | | | | | |

9 // 0 0 0 0 1 8 e 9

10 printf ("%d\n%x\n",bin,bin); // show decimal/hex of binary
11 unsigned char *ptr = (unsigned char *) &bin; // pointer to beginning of bin
12 for(int i=0; i<4; i++){ // print bytes of bin from low to high
13 printf("%hhx ", ptrlil); // memory address

14 } // '%hhx' : 1-byte char in hex
15 printf("\n"); // 'khx' : 2-byte short in hex
16 return 0; /] "hx! : 4-byte int in hex
17 }

18

19 > gcc show_endianness.c
20 > ./a.out

21 6377

22 18e9

23 €9 18 0 0

Notice: num prints with value 18e9 but bytes appear in reverse
order €9 18 when looking at memory

25

Integer Ops and Speed

» Along with Addition and

Subtraction, Multiplication
and Division can also be
done in binary

Algorithms are the same as
base 10 but more painful to
do by hand

This pain is reflected in
hardware speed of these
operations

The Arithmetic and Logic
Unit (ALU) does integer
ops in the machine

A clock ticks in the machine
at some rate like 3Ghz (3
billion times per second)

» Under ideal circumstances,
typical ALU Op speeds are

Operation Cycles
Addition
Logical
Shifts
Subtraction
Multiplication
Division >30
» Due to disparity, it is worth
knowing about relation
between multiply/divide and
bitwise operations

W R ==

> Compiler often uses such

tricks: shift rather than
multiply/divide

26

Mangling bits puts hair on your chest

Below illustrates difference between logical and bitwise operations.
truthy (Logical OR)

int
int
int
int
int
int
int

>

x1
xb
yl
yb
zb
wl
wb

12 || 10; //
12 | 10; //
12 && 10; //
12 & 10; //
12 = 10; //
112; //
~12; //

14

(Bitwise OR)

truthy (Logical AND)

8
6

(Bitwise AND)
(Bitwise XOR)

falsey (Logical NOT)

3

(Bitwise NOT/INVERT)

Bitwise ops evaluate on a per-bit level

32 bits for int, 4 bits shown

>
Bitwise OR
1100 = 12
| 1010 = 10

Bitwise AND

1100
& 1010

12

Bitwise XOR Bitwise NOT

1100 = 12
- 1010 = 10 ~ 1100 = 12
0110 = 6 0011 = 3

27

Bitwise Shifts

» Shift operations move bits within a field of bits

» Shift operations are

y << k; // left shift y by k bits, store in x
y >> k; // right shift y by k bits, store in x
> All integral types can use shifts: long, int, short, char

X

X

> Not applicable to pointers or floating point
» Examples in 8 bits

/7 76543210

char x = 0b00010111; // 23

char y = x << 2; // left shift by 2
// y = 0b01011100; // 92

// x = 0b00010111; // not changed

char z = x >> 3; // right shift by 3
// z = 0b00000010; // 2

// x = 0b00010111; // not changed

char n = 0b10000000; // -128, signed
char s = n >> 4; // right shift by 4
// s = 0b11111000; // -8, sign extension

// right shift >> is "arithmetic"

Shifty Arithmetic Tricks

» Shifts with add/subtract can be used instead of multiplication
and division

\ 4

Turn on optimization: gcc -03 code.c

» Compiler automatically does this if it thinks it will save cycles

» Sometimes programmers should do this but better to convince
compiler to do it for you, comment if doing manually

Multiplication

// 76543210
char x = 0b00001010;
char x2 = x << 1;

// x2 = 0b00010100;
char x4 = x << 2;

// x4 = 0b00101000;
char x7 = (x << 3)-x;
// x7 = (x * 8)-x;
// x7 = 0b01000110;

76543210

10
10%2
20
10x4
40
10%7
10x7
70

Division

//
char
char
//
char
//
char
char
//
//

y

<
N
|

N < <
NN
nonon

z2 =

right shift sign

76543210
0b01101110;

=y > 1;
= 0b00110111;
=y > 2

0b00011011;
0b10101100;
z >> 2;

0b11101011;

110
110/2
55
110/4
27
-84
-84/4
-21

extension

29

Exercise: Checking / Setting Bits

Use a combination of bit shift / bitwise logic operations to---

{

1. Check if bit 1 of int x is set (has value 1)
2. Clear bit i (set bit at index i to value 0)
Show C code for this

int x = ...;

int i = ...;

if(7?77) { // ith bit of x is set
printf("set!\n");

}

i= ...
775
printf("ith bith of x now cleared to

0\1’1");

30

Answers: Checking / Setting Bits

1. Check if bit i of int x is set (has value 1)

int x = ...;

int mask = 1; // or 0b0001 or 0x01

int shifted = mask << i; // shifted 0Db0O...

if(x & shifted){ // x & 0bl10...
- /I mmmmme e

} // 0b00

2. Clear bit i (set bit at index i to value 0)

int x = ...;

int mask = 1; // or 0b0001 or 0x01 ...

int shifted = mask << i; // shifted

int inverted = ~shifted; // inverted Obiil...

X = x & inverted; // x & Ob10...

0b0o0. ..

A

// 0b10. ..

31

Showing Bits

» printf () capabilities:
%d as Decimal
%x as Hexadecimal
%o as Octal
%c as Character

» No specifier for binary

» Can construct such with
bitwise operations
» Code pack contains two
codes to do this
P> printbits.c: single args
printed as 32 bits
» showbits.c: multiple
args printed in binary,
hex, decimal

» Showing bits usually involves
shifting and bitwise AND &

» Example from showbits.c
#define INT_BITS 32

// print bits for x to screen
void showbits(int x){
for(int i=INT_BITS-1; i>=0; i--){
int mask = 1 << i;
if (mask & x){
printf("1");
} else {
printf("0");
}
}
}

32

Bit Masking

» Semi-common for functions to accept bit patterns which
indicate true/false options

» Frequently makes use of bit masks which are constants
associated with specific bits
» Example from earlier: Unix permissions might be::-

#define S_IRUSR 0b100000000 // User Read
#define S_IWUSR 0b010000000 // User Write
#define S_IXUSR 0b001000000 // User Execute
#define S_IRGRP 0b000100000 // Group Read

#define S_IWOTH 0b000000010 // Others Write
#define S_IXOTH 0b000000001 // Others Execute
» Use them to create options to C functions like

int permissions = S_IRUSR|S_IWUSR|S_RGRP;
chmod ("/home/kauffman/solution.zip",permissions);

Unix Permissions with Octal

» Octal arises associated with Unix file permissions
» Every file has 3 permissions for 3 entities

» Permissions are true/false so a single bit will suffice

> 1s -1: long list files, shows

permissions
binar octal
» chmod 665 somefile.txt: 110113101 = 665
change permissions of ruv-rw-r-x somefile.txt
somefile.txt to those U

shown to the right

» chmod 777 x.txt: read /
write / exec for everyone

S
E
R

WO IR
oMo Ao

| 2 .
Chm?d aIs.o honors letter Readable chmod version:
versions like r and w chmod u=rw,g=rw,o=rx somefile.txt

» chmod u+x script.sh #
make file executable

34

